Virulence gene expression in Vibrio cholerae is dependent upon a complex transcriptional cascade that is influenced by both specific and global regulators in response to environmental stimuli. Here, we report that the global regulator integration host factor (IHF) positively affects virulence gene expression in V. cholerae. Inactivation of ihfA and ihfB, the genes encoding the IHF subunits, decreased the expression levels of the two main virulence factors tcpA and ctx and prevented toxin-coregulated pilus and cholera toxin production. IHF was found to directly bind to and bend the tcpA promoter region at an IHF consensus site centered at position ؊162 by using gel mobility shift assays and DNase I footprinting experiments. Deletion or mutation of the tcpA IHF consensus site resulted in the loss of IHF binding and additionally disrupted the binding of the repressor H-NS. DNase I footprinting revealed that H-NS protection overlaps with both the IHF and the ToxT binding sites at the tcpA promoter. In addition, disruption of ihfA in an hns or toxT mutant background had no effect on tcpA expression. These results suggest that IHF may function at the tcpA promoter to alleviate H-NS repression.
Iron uptake, transport and storage in Streptococcus mutans, the principal causative agent of human dental cavities, is unexplored despite early reports in the literature which predict a role for this trace metal in cariogenesis. Experiments in the authors' laboratory revealed several iron-responsive proteins in S. mutans, one of which reacted with a polyclonal antiserum directed against the FimA fimbrial adhesin from Streptococcus parasanguis on Western blots. The results of Western blot and Northern hybridization experiments support an inverse relationship between iron availability and S. mutans fimA expression, and metal ion uptake experiments implicate FimA in S. mutans 55 Fe transport. Cloning of the S. mutans fimA homologue facilitated the construction of a fimA knockout mutant which grew poorly in an ironlimiting medium relative to the wild-type progenitor strain, lending further support to a role for FimA in S. mutans iron transport. The authors also identified and cloned a dtxR-like gene (dlg) located downstream of fimA on the S. mutans chromosome, and noted increased fimA expression in a S. mutans dlg knockout mutant relative to wild-type on RNA spot blots and Western blots. The uptake of 55 Fe, which was also significantly increased in this mutant, was compromised in a fimA/dlg double knockout. These findings are consistent with a role for Dlg in the iron-mediated regulation of fimA, and possibly other S. mutans iron transporters. Finally, the cariogenic potential of the fimA and dlg knockout mutants was not significantly different from that of the wild-type progenitor in a germ-free rat model.
Expression of the ctx and tcp genes, which encode cholera toxin and the toxin coregulated pilus, the Vibrio cholerae O1 virulence determinants having the largest contribution to cholera disease, is repressed by the nucleoid-associated protein H-NS and activated by the AraC-like transcriptional regulator ToxT. To elucidate the molecular mechanism by which H-NS controls transcription of the ctxAB operon, H-NS repression and binding were characterized by using a promoter truncation series, gel mobility shift assays, and DNase I footprinting. Promoter regions found to be important for H-NS repression correlated with in vitro binding. Four main H-NS binding regions are present at ctx. One region overlaps the high-affinity ToxT binding site and extends upstream, another overlaps the ToxT low-affinity binding site around the ؊35 element, and the remaining two are located adjacent to one another downstream of the transcriptional start site. Competition for binding to the overlapping H-NS/ToxT binding sites was observed in gel mobility shift assays, where ToxT was found to displace H-NS from the ctx promoter region. In addition, regulatory differences between the ctx and tcpA promoters were examined. H-NS was found to have a higher relative binding affinity for the ctx promoter than for the tcpA promoter in vitro. In contrast to ToxT-dependent activation of the tcpA promoter, ToxT activation of ctx did not require the C-terminal domain of the ␣-subunit of RNA polymerase. These findings demonstrate that transcriptional regulation of ctx and tcpA by H-NS and ToxT is mechanistically distinct, and this may lead to important differences in the expression of these coregulated genes.Vibrio cholerae is the etiological agent of the human diarrheal disease cholera. Two virulence factors that are produced by V. cholerae and are essential for disease are toxin-coregulated pilus (TCP) (62) and cholera toxin (CT) (28). TCP is a type IV pilus that is assembled by polymerization of the pilin subunit, TcpA, and forms long filaments that laterally associate into bundles. Expression of TCP in vitro results in autoagglutination of the bacterium, and TCP-mediated bacterium-bacterium interactions in vivo facilitate microcolony formation on the intestinal epithelium. Pilus biogenesis requires at least 9 other proteins in addition to TcpA, which are encoded in an operon located on the Vibrio pathogenicity island (VPI). The pilus biogenesis apparatus plays a second role in colonization by secreting the cotranscribed, soluble colonization factor TcpF, which is also essential for colonization but for which a mechanism remains unknown (29, 30). The second main virulence factor, CT, is a potent A 1 B 5 subunit, ADP-ribosylating toxin that is responsible for the severe watery diarrhea that is associated with cholera. CT is encoded by the ctxAB operon, which is located on the lysogenic bacteriophage CTX. The VPI and CTX were both acquired by horizontal gene transfer. TCP serves as the high-affinity receptor for CTX that links TCP production to ctx acq...
Cholera, an enteric disease that can reach pandemic proportions, remains a world-wide problem that is positioned to increase in incidence as changes in global climate or armed conflict spawn the conditions that enhance transmission to humans and, thus, precipitate epidemic cholera. An effective subunit cholera vaccine that can provide protective immunity with one parenteral immunization would be a major advantage over the existing oral vaccines that can require two doses for optimal protection. The existing vaccines are clearly effective in some settings, but are less so in others, especially with respect to specific groups such as young (2-5 years) children. In our efforts to develop a cholera subunit vaccine, we focused on two Vibrio cholerae antigens, LPS (lipopolysaccharide) and TCP (toxin co-regulated pilus), that are known to induce protective antibodies in animal models and, in the case of anti-LPS antibodies, to be associated with clinical protection of V. cholerae exposed or vaccinated individuals. This review discusses the current cholera vaccines and compares the advantages of a cholera subunit vaccine to that of the whole cell vaccines. We discuss the possible subunit antigens and prospective targeted use of a subunit cholera vaccine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.