We previously reported that perineuronal nets (PNNs) are required for cocaine-associated memories. Perineuronal nets are extracellular matrix that primarily surrounds parvalbumin (PV)-containing, GABAergic fast-spiking interneurons (FSIs) in the medial prefrontal cortex (mPFC). Here we measured the impact of acute (1 d) or repeated (5 d) cocaine exposure on PNNs and PV cells within the prelimbic and infralimbic regions of the mPFC. Adult rats were exposed to 1 or 5 d of cocaine and stained for PNNs (using Wisteria floribunda agglutinin) and PV intensity 2 or 24 h later. In the prelimbic and infralimbic PFC, PNN staining intensity decreased 2 h after 1 d of cocaine exposure but increased after 5 d of cocaine exposure. Cocaine also produced changes in PV intensity, which generally lagged behind that of PNNs. In the prelimbic PFC, both 1 and 5 d of cocaine exposure increased GAD65/67 puncta near PNN-surrounded PV cells, with an increase in the GAD65/67-to-VGluT1 puncta ratio after 5 d of cocaine exposure. In the prelimbic PFC, slice electrophysiology studies in FSIs surrounded by PNNs revealed that both 1 and 5 d of cocaine exposure reduced the number of action potentials 2 h later. Synaptic changes demonstrated that 5 d of cocaine exposure increased the inhibition of FSIs, potentially reducing the inhibition of pyramidal neurons and contributing to their hyperexcitability during relapse behavior. These early and rapid responses to cocaine may alter the network stability of PV FSIs that partially mediate the persistent and chronic nature of drug addiction.
CP-AMPARs in the nucleus accumbens (NAc) mediate cue-triggered motivation for food and cocaine. In addition, increases in NAc CP-AMPAR expression and function can be induced by cocaine or sugary, fatty junk-foods. However, the precise nature of these alterations and the degree to which they rely on the same underlying mechanisms is not well understood. This has important implications for understanding adaptive vs. maladaptive plasticity that drives food-and drug-seeking behaviors. Furthermore, effects of junk-foods on glutamatergic plasticity in females are unknown. Here, we use a combination of protein biochemistry and whole-cell patch clamping to determine effects of diet manipulation on glutamatergic plasticity within the NAc of males and females. We found that junk-food consumption increases silent synapses and subsequently increases CP-AMPAR levels in males in the NAc of male rats. In addition, a brief period of junk-food deprivation is needed for the synaptic insertion of CP-AMPARs and the maturation of silent synapses in males. In contrast, junk-food did not induce AMPAR plasticity in females but may instead alter NMDAR-mediated transmission. Thus, these studies reveal sex differences in the effects of junk-food on NAc synaptic plasticity. In addition, they provide novel insights into how essential food rewards alter NAc function.
Perineuronal nets (PNNs) surrounding fast-spiking, parvalbumin (PV) inhibitory interneurons are vital for providing excitatory:inhibitory balance within cortical circuits, and this balance is impaired in disorders such as schizophrenia, autism spectrum disorder, and substance use disorders. These disorders are also associated with altered diurnal rhythms, yet few studies have examined the diurnal rhythms of PNNs or PV cells. We measured the intensity and number of PV cells and PNNs labeled with Wisteria floribunda agglutinin (WFA) in the rat prelimbic medial prefrontal cortex (mPFC) at Zeitgeber times (ZT) ZT0, 6, 12, and 18. We also measured the oxidative stress marker 8-oxo-deoxyguanosine (8-oxo-dG). Relative to ZT0, the intensities of PNN and PV staining were increased in the dark (active) phase compared with the light (inactive) phase. The intensity of 8-oxo-dG was decreased from ZT0 at all time points (ZT6,12,18), in both PV cells and non-PV cells. To examine corresponding changes in inhibitory and excitatory inputs, we measured GAD 65/67 and vGlut1 puncta apposed to PV cells with and without PNNs. Relative to ZT6, there were more excitatory puncta on PV cells surrounded by PNNs at ZT18, but no changes in PV cells devoid of PNNs. No changes in inhibitory puncta were observed. Whole-cell slice recordings in fast-spiking (PV) cells with PNNs showed an increased ratio of -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor:N-methyl-Daspartate receptor (AMPA:NMDA) at ZT18 vs. ZT6. The number of PV cells and co-labeled PV/PNN cells containing the transcription factor orthodenticle homeobox 2 (OTX2), which maintains PNNs, showed a strong trend toward an increase from ZT6 to ZT18. These diurnal fluctuations in PNNs and PV cells are expected to alter cortical excitatory:inhibitory balance and provide new insights into treatment approaches for diseases impacted by imbalances in sleep and circadian rhythms.
Over half of individuals infected with human immunodeficiency virus (HIV) suffer from HIV-associated neurocognitive disorders (HANDs), yet the molecular mechanisms leading to neuronal dysfunction are poorly understood. Feline immunodeficiency virus (FIV) naturally infects cats and shares its structure, cell tropism, and pathology with HIV, including wide-ranging neurological deficits. We employ FIV as a model to elucidate the molecular pathways underlying HIV-induced neuronal dysfunction, in particular, synaptic alteration. Among HIV-induced neuron-damaging products, HIV envelope glycoprotein gp120 triggers elevation of intracellular Ca2+ activity in neurons, stimulating various pathways to damage synaptic functions. We quantify neuronal Ca2+ activity using intracellular Ca2+ imaging in cultured hippocampal neurons and confirm that FIV envelope glycoprotein gp95 also elevates neuronal Ca2+ activity. In addition, we reveal that gp95 interacts with the chemokine receptor, CXCR4, and facilitates the release of intracellular Ca2+ by the activation of the endoplasmic reticulum (ER)-associated Ca2+ channels, inositol triphosphate receptors (IP3Rs), and synaptic NMDA receptors (NMDARs), similar to HIV gp120. This suggests that HIV gp120 and FIV gp95 share a core pathological process in neurons. Significantly, gp95’s stimulation of NMDARs activates cGMP-dependent protein kinase II (cGKII) through the activation of the neuronal nitric oxide synthase (nNOS)-cGMP pathway, which increases Ca2+ release from the ER and promotes surface expression of AMPA receptors, leading to an increase in synaptic activity. Moreover, we culture feline hippocampal neurons and confirm that gp95-induced neuronal Ca2+ overactivation is mediated by CXCR4 and cGKII. Finally, cGKII activation is also required for HIV gp120-induced Ca2+ hyperactivation. These results thus provide a novel neurobiological mechanism of cGKII-mediated synaptic hyperexcitation in HAND.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.