Natural killer (NK) cells are immune cells that can kill certain types of cancer cells. Adoptive transfer of NK cells represents a promising immunotherapy for malignant tumours; however, there is a lack of methods to validate anti‐tumour activity of NK cells in vivo. Herein, we report a new chemiluminescent probe to image in situ the granzyme B‐mediated killing activity of NK cells against cancer cells. We have optimised a granzyme B‐specific construct using an activatable phenoxydioxetane reporter so that enzymatic cleavage of the probe results in bright chemiluminescence. The probe shows high selectivity for active granzyme B over other proteases and higher signal‐to‐noise ratios than commercial fluorophores. Finally, we demonstrate that the probe can detect NK cell activity in mouse models, being the first chemiluminescent probe for in vivo imaging of NK cell activity in live tumours.
Xyloglucan from the walls of Rosa cells that had been cultured on [12C]- or [13C]-glucose formed bands in caesium trifluoroacetate with mean buoyant densities of 1.575 or 1.616 g/ml respectively. Incubation of a mixture of [13C,3H]xyloglucan and [12C,1H]xyloglucan in the presence of xyloglucan endotransglycosylase (XET) activity caused the mean buoyant density of the radioactive material to decrease, indicating that interpolymeric transglycosylation could be detected in vitro. We used two 13C/3H-dual-labelling protocols to look for interpolymeric transglycosylation in vivo. In protocol A, [13C]glucose-grown Rosa cells were transferred into [12C]glucose medium 6 h after a ≈ 2 h pulse of L-[1-3H]arabinose (which radiolabels the xylose residues of xyloglucan). The mean buoyant density of the wall-bound [3H]xyloglucan decreased during the following 7 days in culture. This indicates that, during or after the wall-binding of newly synthesized [12C,1H]xyloglucan, it became covalently attached to previously wall-bound [13C,3H]xyloglucan. In protocol B, [12C]glycerol- or [12C]glucose-grown Rosa cells were transferred into [13C]glucose medium, 20 or 60 min before a ≈ 2 h pulse of [3H]arabinose. The buoyant density of the earliest wall-bound [3H]xyloglucan showed that it had a 12C/13C ratio of ~ 1:1. This indicates that, during (or, implausibly, before) wall-binding, the newly synthesized [13C,3H]xyloglucan became covalently attached to previously synthesized [12C]xyloglucan. During the following 7 days in culture, the mean buoyant density of the [3H]xyloglucan increased, showing that later-synthesized [13C,1H]xyloglucan can be covalently attached to previously wall-bound [12C,13C,3H]xyloglucan. The only known mechanism by which segments of xyloglucans could become covalently attached to each other in the cell wall is by interpolymeric transglycosylation catalysed by XET. We conclude that XET-catalysed interpolymeric transglycosylation accompanies, and probably causes, the integration of newly secreted xyloglucan into the cell-wall architecture.
Despite significant recent therapeutic advances, complete mucosal healing remains a difficult treatment target for many patients with inflammatory bowel diseases (IBD) to achieve. Our review focuses on the translational concept of promoting resolution of inflammation and repair as a necessary adjunctive step to reach this goal. We explore the roles of inflammatory cell apoptosis and efferocytosis to promote resolution, the new knowledge of gut monocyte-macrophage populations and their secreted prorepair mediators, and the processes of gut epithelial repair and regeneration to bridge this gap. We discuss the need and rationale for this vision and the tangible steps toward integrating proresolution therapies in IBD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.