Over the last two decades, prototype devices for future classical and quantum computing technologies have been fabricated, by using scanning tunneling microscopy and hydrogen resist lithography to position phosphorus atoms in silicon with atomic-scale precision. Despite these successes, phosphine remains the only donor precursor molecule to have been demonstrated as compatible with the hydrogen resist lithography technique. The potential benefits of atomic-scale placement of alternative dopant species have, until now, remained unexplored. In this work, we demonstrate the successful fabrication of atomic-scale structures of arsenic-in-silicon. Using a scanning tunneling microscope tip, we pattern a monolayer hydrogen mask to selectively place arsenic atoms on the Si(001) surface using arsine as the precursor molecule. We fully elucidate the surface chemistry and reaction pathways of arsine on Si(001), revealing significant differences to phosphine. We explain how these differences result in enhanced surface immobilization and inplane confinement of arsenic compared to phosphorus, and a dose-rate independent arsenic saturation density of 0.24±0.04 monolayers. We demonstrate the successful encapsulation of arsenic delta-layers using silicon molecular beam epitaxy, and find electrical characteristics that are competitive with equivalent structures fabricated with phosphorus. Arsenic delta-layers are also found to offer improvement in out-of-plane confinement compared to similarly prepared phosphorus layers, while still retaining >80% carrier activation and sheet resistances of <2 kΩ/□. These excellent characteristics of arsenic represent opportunities to enhance existing capabilities of atomic-scale fabrication of dopant structures in silicon, and are particularly important for threedimensional devices, where vertical control of the position of device components is critical. TOC GRAPHICS
-This paper systematically studies GeSn n-FETs, from individual process modules to a complete device. High-k gate stacks and NiGeSn metallic contacts for source and drain are characterized in independent experiments. To study both direct and indirect bandgap semiconductors, a range of 0 at.% to 14.5 at.% Sn-content GeSn alloys are investigated. Special emphasis is placed on capacitance-voltage (C-V) characteristics and Schottky-barrier optimization. GeSn n-FET devices are presented including temperature dependent I-V characteristics. Finally, as an important step towards implementing GeSn in tunnel-FETs, negative differential resistance in Ge 0.87 Sn 0.13 tunnel-diodes is demonstrated at cryogenic temperatures. The present work provides a base for further optimization of GeSn FETs and novel tunnel FET devices.
We present a comprehensive study on the formation and tuning of the Schottky barrier of NiGeSn metallic alloys on Ge 1-x Sn x semiconductors. First, the Ni metallization of GeSn is investigated for a wide range of Sn contents (x ¼ 0-0.125). Structural analysis reveals the existence of different poly-crystalline NiGeSn and Ni 3 (GeSn) 5 phases depending on the Sn content. Electrical measurements confirm a low NiGeSn sheet resistance of 12 X/(almost independent of the Sn content. We extracted from Schottky barrier height measurements in NiGeSn/GeSn/NiGeSn metal-semiconductor-metal diodes Schottky barriers for the holes below 0.15 eV. They decrease with the Sn content, thereby confirming NiGeSn as an ideal metal alloy for p-type contacts. Dopant segregation for both p-and n-type dopants is investigated as a technique to effectively modify the Schottky barrier of NiGeSn/GeSn contacts. Secondary ion mass spectroscopy is employed to analyze dopant segregation and reveal its dependence on both the Sn content and biaxial layer strain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.