Background-The Parkinson's Progression Markers Initiative (PPMI) is an ongoing observational, longitudinal cohort study of participants with Parkinson's disease, healthy controls, and carriers of the most common Parkinson's disease-related genetic mutations, which aims to define biomarkers of Parkinson's disease diagnosis and progression. All participants are assessed annually with a battery of motor and non-motor scales, 123-I Ioflupane dopamine transporter (DAT) imaging, and biological variables. We aimed to examine whether non-manifesting carriers of LRRK2 and GBA mutations have prodromal features of Parkinson's disease that correlate with reduced DAT binding.
Objective: Reduction in glucocerebrosidase (GCase; encoded by GBA) enzymatic activity has been linked to Parkinson's disease (PD). Here, we correlated GCase activity and PD phenotype in the Parkinson's Progression Markers Initiative (PPMI) cohort. Methods: We measured GCase activity in dried blood spots from 1559 samples of participants in the inception PPMI cohort, collected in four annual visits (from baseline visit to Year-3). Participants (PD, n = 392; controls, n = 175) were fully sequenced for GBA variants by means of genomewide genotyping arrays, whole-exome sequencing, whole-genome sequencing, Sanger sequencing, and RNA-sequencing. Results: Fifty-two PD participants (13.4%) and 13 (7.4%) controls carried a GBA variant. GBA status was strongly associated with GCase activity. Among noncarriers, GCase activity was similar between PD and controls. Among GBA p.E326K carriers (PD, n = 20; controls, n = 5), activity was significantly lower in PD carriers than control carriers (9.53 µmol/L/h vs. 11.68 µmol/L/h, P = 0.035). Glucocerebrosidase activity was moderately (r = 0.45) associated with white blood cell (WBC) count. Next, we divided the noncarriers with PD to tertiles based on WBC count-corrected enzymatic activity. Members of the lower tertile had higher MDS-Unified Parkinson's Disease Rating Scale motor score in the "off" medication examination at year-III exam. Longitudinal analyses demonstrated slight reduction of activity in samples collected earlier on in the study, likely because of longer storage time. Interpretation: GCase activity is associated with GBA genotype, WBC count, and among p.E326K variant carriers, with PD status. Reduced
We examined 2-year longitudinal change in clinical features and biomarkers in LRRK2 non-manifesting carriers (NMCs) versus healthy controls (HCs) enrolled in the Parkinson’s Progression Markers Initiative (PPMI). We analyzed 2-year longitudinal data from 176 LRRK2 G2019S NMCs and 185 HCs. All participants were assessed annually with comprehensive motor and non-motor scales, dopamine transporter (DAT) imaging, and biofluid biomarkers. The latter included cerebrospinal fluid (CSF) Abeta, total tau and phospho-tau; serum urate and neurofilament light chain (NfL); and urine bis(monoacylglycerol) phosphate (BMP). At baseline, LRRK2 G2019S NMCs had a mean (SD) age of 62 (7.7) years and were 56% female. 13% had DAT deficit (defined as <65% of age/sex-expected lowest putamen SBR) and 11% had hyposmia (defined as ≤15th percentile for age and sex). Only 5 of 176 LRRK2 NMCs developed PD during follow-up. Although NMCs scored significantly worse on numerous clinical scales at baseline than HCs, there was no longitudinal change in any clinical measures over 2 years or in DAT binding. There were no longitudinal differences in CSF and serum biomarkers between NMCs and HCs. Urinary BMP was significantly elevated in NMCs at all time points but did not change longitudinally. Neither baseline biofluid biomarkers nor the presence of DAT deficit correlated with 2-year change in clinical outcomes. We observed no significant 2-year longitudinal change in clinical or biomarker measures in LRRK2 G2019S NMCs in this large, well-characterized cohort even in the participants with baseline DAT deficit. These findings highlight the essential need for further enrichment biomarker discovery in addition to DAT deficit and longer follow-up to enable the selection of NMCs at the highest risk for conversion to enable future prevention clinical trials.
Background There are limited data on the impact of imaging modality selection for the assessment of coronary artery disease (CAD) risk on downstream resource utilisation. This study sought to identify differences between patient populations in the US undergoing stress echocardiography, single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI), positron emission tomography (PET) MPI, and coronary computed tomography angiography (cCTA) for the assessment of CAD risk, and associated physician referral patterns. Methods Claims and electronic health records data for 2.5 million US patients who received stress echocardiography, cCTA, SPECT MPI or PET MPI between January 2016 and March 2018, from the Decision Resources Group Real-World Evidence US Data Repository, were analysed. Patients were stratified into suspected and existing CAD cohorts, and further stratified by pre-test risk and presence and recency of interventions or acute cardiac events (within 1–2 years pre-index test). Linear and logistic regression were used to compare numeric and categorical variables. Results Physicians were more likely to refer patients to standalone SPECT MPI (77%) and stress echocardiography (18%) than PET MPI (3%) and cCTA (2%). Overall, 43% of physicians referred more than 90% of their patients to standalone SPECT MPI. Just 3%, 1% and 1% of physicians referred more than 90% of their patients to stress echocardiography, PET MPI or cCTA. At the aggregated imaging level, patients who underwent stress echocardiography or cCTA had similar comorbidity profiles. Comorbidity profiles were also similar for patients who underwent SPECT MPI and PET MPI. Conclusion Most patients underwent SPECT MPI at the index date, with very few undergoing PET MPI or cCTA. Patients who underwent cCTA at the index date were more likely to undergo additional imaging tests compared with those who underwent other imaging modalities. Further evidence is needed to understand factors influencing imaging test selection across patient populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.