BackgroundThe vaginal microbial community plays a vital role in maintaining women’s health. Understanding the precise bacterial composition is challenging because of the diverse and difficult-to-culture nature of many bacterial constituents, necessitating culture-independent methodology. During a natural menstrual cycle, physiological changes could have an impact on bacterial growth, colonization, and community structure. The objective of this study was to assess the stability of the vaginal microbiome of healthy Canadian women throughout a menstrual cycle by using cpn60-based microbiota analysis. Vaginal swabs from 27 naturally cycling reproductive-age women were collected weekly through a single menstrual cycle. Polymerase chain reaction (PCR) was performed to amplify the universal target region of the cpn60 gene and generate amplicons representative of the microbial community. Amplicons were pyrosequenced, assembled into operational taxonomic units, and analyzed. Samples were also assayed for total 16S rRNA gene content and Gardnerella vaginalis by quantitative PCR and screened for the presence of Mollicutes by using family and genus-specific PCR.ResultsOverall, the vaginal microbiome of most women remained relatively stable throughout the menstrual cycle, with little variation in diversity and only modest fluctuations in species richness. Microbiomes between women were more different than were those collected consecutively from individual women. Clustering of microbial profiles revealed the expected groupings dominated by Lactobacillus crispatus, Lactobacillus iners, and Lactobacillus jensenii. Interestingly, two additional clusters were dominated by either Bifidobacterium breve or a heterogeneous mixture of nonlactobacilli. Direct G. vaginalis quantification correlated strongly with its pyrosequencing-read abundance, and Mollicutes, including Mycoplasma hominis, Ureaplasma parvum, and Ureaplasma urealyticum, were detected in most samples.ConclusionsOur cpn60-based investigation of the vaginal microbiome demonstrated that in healthy women most vaginal microbiomes remained stable through their menstrual cycle. Of interest in these findings was the presence of Bifidobacteriales beyond just Gardnerella species. Bifidobacteriales are frequently underrepresented in 16S rRNA gene-based studies, and their detection by cpn60-based investigation suggests that their significance in the vaginal community may be underappreciated.
The vaginal microbiota is important in women’s reproductive and overall health. However, the relationships between the structure, function and dynamics of this complex microbial community and health outcomes remain elusive. The objective of this study was to determine the phylogenetic range and abundance of prokaryotes in the vaginal microbiota of healthy, non-pregnant, ethnically diverse, reproductive-aged Canadian women. Socio-demographic, behavioural and clinical data were collected and vaginal swabs were analyzed from 310 women. Detailed profiles of their vaginal microbiomes were generated by pyrosequencing of the chaperonin-60 universal target. Six community state types (CST) were delineated by hierarchical clustering, including three Lactobacillus-dominated CST (L. crispatus, L. iners, L. jensenii), two Gardnerella-dominated (subgroups A and C) and an “intermediate” CST which included a small number of women with microbiomes dominated by seven other species or with no dominant species but minority populations of Streptococcus, Staphylococcus, Peptoniphilus, E. coli and various Proteobacteria in co-dominant communities. The striking correspondence between Nugent score and deep sequencing CST continues to reinforce the basic premise provided by the simpler Gram stain method, while additional analyses reveal detailed cpn60-based phylogeny and estimated abundance in microbial communities from vaginal samples. Ethnicity was the only demographic or clinical characteristic predicting CST, with differences in Asian and White women (p = 0.05). In conclusion, this study confirms previous work describing four cpn60-based subgroups of Gardnerella, revealing previously undescribed CST. The data describe the range of bacterial communities seen in Canadian women presenting with no specific vaginal health concerns, and provides an important baseline for future investigations of clinically important cohorts.
ObjectiveTo characterize the vaginal microbiota of women following preterm premature rupture of membranes (PPROM), and determine if microbiome composition predicts latency duration and perinatal outcomes.DesignA prospective cohort studySettingCanadaPopulationWomen with PPROM between 24+0 and 33+6 weeks gestational age (GA).MethodsMicrobiome profiles, based on pyrosequencing of the cpn60 universal target, were generated from vaginal samples at time of presentation with PPROM, weekly thereafter, and at delivery.Main Outcome MeasuresVaginal microbiome composition, latency duration, gestational age at delivery, perinatal outcomes.ResultsMicrobiome profiles were generated from 70 samples from 36 women. Mean GA at PPROM was 28.8 wk (mean latency 2.7 wk). Microbiome profiles were highly diverse but sequences representing Megasphaera type 1 and Prevotella spp. were detected in all vaginal samples. Only 13/70 samples were dominated by Lactobacillus spp. Microbiome profiles at the time of membrane rupture did not cluster by gestational age at PPROM, latency duration, presence of chorioamnionitis or by infant outcomes. Mycoplasma and/or Ureaplasma were detected by PCR in 81% (29/36) of women, and these women had significantly lower GA at delivery and correspondingly lower birth weight infants than Mycoplasma and/or Ureaplasma negative women.ConclusionWomen with PPROM had mixed, abnormal vaginal microbiota but the microbiome profile at PPROM did not correlate with latency duration. Prevotella spp. and Megasphaera type I were ubiquitous. The presence of Mollicutes in the vaginal microbiome was associated with lower GA at delivery. The microbiome was remarkably unstable during the latency period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.