Globular clusters (GCs) are thought to be ancient relics from the early formative phase of galaxies, although their physical origin remains uncertain 1, 2. GCs are most numerous around massive elliptical galaxies, where they can exhibit a broad colour dispersion, suggesting a wide metallicity spread 3. Here, we show that many thousands of compact and massive (∼5 × 10 3-3 × 10 6 M ☉) star clusters have formed at an approximately steady rate over, at least, the past ∼1 Gyr around NGC 1275, the central giant elliptical galaxy of the Perseus cluster. Beyond ∼1 Gyr, these star clusters are indistinguishable in broadband optical colours from the more numerous GCs. Their number distribution exhibits a similar dependence with 2119-M-001-026-. T. B. thanks HKU for generous support from the Visiting Research Professor Scheme. Contributions J. L. supervised the project, and wrote the paper. E. W. and Y. O. conducted the technical aspects of the work. T. B. and E. M. initiated the project, and participated in the interpretation of the results.
Background: Serotonin (5-HT) modulates cholinergic neurotransmission and exacerbates airway smooth muscle (ASM) contraction in normal animal and nonasthmatic human tissue. Exposure to house dust mite allergen (HDMA) and ozone (O3) leads to airway hyperreactivity and 5-HT-positive cells in the airway epithelium of infant rhesus monkeys. Research shows that concomitant exposure in allergic animals has an additive effect on airway hyperreactivity. Objectives: In this study, the hypothesis is that the exposure of allergic infant rhesus monkeys to HDMA, O3 and in combination, acting through 5-HT receptors, enhances 5-HT modulation of postganglionic cholinergic ASM contraction. Methods: Twenty-four HDMA-sensitized infant monkeys were split into 4 groups at the age of 1 month, and were exposed to filtered air (FA), HDMA, O3 or in combination (HDMA+O3). At the age of 6 months, airway rings were harvested and postganglionic, and parasympathetic-mediated ASM contraction was evaluated using electrical-field stimulation (EFS). Results: 5-HT exacerbated the EFS response within all exposure groups, but had no effect in the FA group. 5-HT2, 5-HT3 and 5-HT4 receptor agonists exacerbated the response. 5-HT concentration-response curves performed after incubation with specific receptor antagonists confirmed the involvement of 5-HT2, 5-HT3 and 5-HT4 receptors. Conversely, a 5-HT1 receptor agonist attenuated the tension across all groups during EFS, and in ASM contracted via exogenous acetylcholine. Conclusions: HDMA, O3 and HDMA+O3 exposure in a model of childhood allergic asthma enhances 5-HT exacerbation of EFS-induced ASM contraction through 5-HT2, 5-HT3 and 5-HT4 receptors. A nonneurogenic inhibitory pathway exists, unaffected by exposure, mediated by 5-HT1 receptors located on ASM.
The intensity and effects of early impact bombardment on the major satellites of the giant planets during an episode of giant planet migration is still poorly known. We use a combination of dynamical N-body and Monte Carlo simulations to determine impact probabilities, impact velocities, and expected masses that collide with these satellites to determine the chronology of impacts during the migration. Volatile loss through bombardment is typically 20% for Miranda, a few percent for the larger Uranian satellites and negligible for the Galilean satellites. Due to its small size and the high impact velocity there is a >99% chance that Miranda suffered a catastrophic impact that shattered the satellite. Subsequent re-accretion from a circum-Uranian ring could account for its peculiar surface morphology and low density. The probability to destroy Ariel and Umbriel is 15% and 1% for Titania and Oberon. Approximately 90% of the mass in planetesimals that passes through the Jovian and Uranian satellite systems (about 4 M and 2 M respectively) does so in about 15 Myr. This extremely rapid and intense bombardment causes repeated local crustal melting on all satellites. The combination of these effects results in an entirely different impact chronology than that of the inner solar system. We conclude that the simple extrapolation of the lunar chronology to the outer solar system satellites is not correct. The tail end (after 25 Myr) of the chronology function has an e-folding time of 100 Myr at Jupiter, but follows a cumulative Weibull distribution at Uranus, making direct comparisons between the gas and ice giant planets difficult. Based on our results the surfaces of the Uranian satellites, Callisto, and possibly Ganymede, are all about the same age, and are roughly 150Myr younger than the timing of the dynamical instability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.