Background Schistosomiasis is endemic in many low-income and middle-income countries. To reduce infectionassociated morbidity, WHO has published guidelines for control of schistosomiasis based on targeted mass drug administration (MDA) and, in 2017, on supplemental snail control. We compared the current WHO guideline-based strategies from 2012 to an alternative, adaptive decision making framework for control in heterogeneous environments, to estimate their predicted relative effectiveness and time to achievement of defined public health goals. Methods In this model-based comparison study, we adapted an established transmission model for Schistosoma infection that couples local human and snail populations and includes aspects of snail ecology and parasite biology. We calibrated the model using data from high-risk, moderate-risk, and lower-risk rural villages in Kenya, and then simulated control via MDA. We compared 2012 WHO guidelines with a modified adaptive strategy that tested a lower-prevalence threshold for MDA and shorter intervals between implementation, evaluation, and modification. We also explored the addition of snail control to this modified strategy. The primary outcomes were the proportion of simulations that achieved the WHO targets in children aged 5-14 years of less than 5% (2020 morbidity control goal) and less than 1% (2025 elimination as a public health problem goal) heavy infection and the mean duration of treatment required to achieve these goals. FindingsIn high-risk communities (80% baseline prevalence), current WHO strategies for MDA were not predicted to achieve morbidity control (<5% prevalence of heavy infections) in 80% of simulations over a 10-year period, whereas the modified adaptive strategy was predicted to achieve this goal in over 50% of simulations within 5 years. In low-risk and moderate-risk communities, current WHO guidelines from 2012 were predicted to achieve morbidity control in most simulations (96% in low-risk and 41% for moderate-risk), although the proposed adaptive strategy reached this goal in a shorter period (mean reduction of 5 years). The model predicted that the addition of snail control to the proposed adaptive strategy would achieve morbidity control in all high-risk communities, and 54% of communities could reach the goal for elimination as a public health problem (<1% heavy infection) within 7 years.Interpretation The modified adaptive decision making framework is predicted to be more effective than the current WHO guidelines in reaching 2025 public health goals, especially for high-prevalence regions. Modifications in current guidelines could reduce the time and resources needed for countries who are currently working on achieving public health goals against schistosomiasis.
The sodium-bicarbonate cotransporter NBC1 is targeted exclusively at the basolateral membrane. Mutagenesis of a dihydrophobic FL motif (residues 1013-1014) in the C-terminal domain disrupts the targeting of NBC1. In the present study, we determined the precise constraints of the FL motif required for basolateral targeting of NBC1 by expressing epitope-tagged wild-type and mutant NBC1 in MDCK cells and RNA-injected Xenopus oocytes and examining their subcellular localization. We assayed the functional activity of the mutants by measuring bicarbonate-induced currents in oocytes. Wild-type NBC1 (containing PFLS) was expressed exclusively on the basolateral membrane in MDCK cells. Reversal of the FL motif (PLFS) had no effect on basolateral targeting or activity. Shifting the FL motif one residue upstream (FLPS) resulted in mistargeting of the apical membrane but the FLPS mutant retained its functional activity in oocytes. Shifting the FL motif one residue downstream resulted in a mutant (PSFL) that did not efficiently translocate to the plasma membrane and was instead colocalized with the ER marker, protein disulfide isomerase (PDI). Analysis of circular dichroism (CD) revealed that a short peptide, 20 amino acid residues, of wild-type NBC1 contained a significant alpha-helical structure, whereas peptides in which the FL motif was reversed or C-terminally shifted were disordered. We therefore propose that the specific orientation and the precise location of the FL motif in the primary sequence of NBC1 are strict requirements for the alpha-helical structure of the C-terminal cytoplasmic domain and for targeting of NBC1 to the basolateral membrane.
Li HC, Kucher V, Li EY, Conforti L, Zahedi KA, Soleimani M. The role of aspartic acid residues 405 and 416 of the kidney isotype of sodium-bicarbonate cotransporter 1 in its targeting to the plasma membrane. Am J Physiol Cell Physiol 302: C1713-C1730, 2012. First published March 21, 2012 doi:10.1152/ajpcell.00147.2011.-The NH2 terminus of the sodium-bicarbonate cotransporter 1 (NBCe1) plays an important role in its targeting to the plasma membrane. To identify the amino acid residues that contribute to the targeting of NBCe1 to the plasma membrane, polarized MDCK cells were transfected with expression constructs coding for green fluorescent protein (GFP)-tagged NBCe1 NH 2-terminal deletion mutants, and the localization of GFP-tagged proteins was analyzed by confocal microscopy. Our results indicate that the amino acids between residues 399 and 424 of NBCe1A contain important sequences that contribute to its localization to the plasma membrane. Site-directed mutagenesis studies showed that GFP-NBCe1A mutants D405A and D416A are retained in the cytoplasm of the polarized MDCK epithelial cells. Examination of functional activities of D405A and D416A reveals that their activities are reduced compared with the wild-type NBCe1A. Similarly, aspartic acid residues 449 and 460 of pancreatic NBCe1 (NBCe1B), which correspond to residues 405 and 416 of NBCe1A, are also required for its full functional activity and accurate targeting to the plasma membrane. In addition, while replacement of D416 with glutamic acid did not affect the targeting or functional activity of NBCe1A, substitution of D405 with glutamic acid led to the retention of the mutated protein in the intracellular compartment and impaired functional activity. These studies demonstrate that aspartic acid residues 405 and 416 in the NH2 terminus of NBCe1A are important in its accurate targeting to the plasma membrane.NBCe1; membrane transporters; renal proximal tubule; metabolic acidosis; membrane potential IN THE KIDNEY PROXIMAL TUBULE , the basolateral Na ϩ :HCO 3
A C-terminal dihydrophobic FL motif plays a vital role in the basolateral targeting of sodium bicarbonate cotransporter 1. To further characterize the role of dihydrophobic FL motif, 1). the FL motif in wild type (PFLS) was reversed to LF (PLFS), 2). the FL motif (PFLS) was shifted upstream (FLPS), and 3). the FL motif (PFLS) was shifted downstream (PSFL). The wild type (PFLS) and its mutant (PLFS) were exclusively expressed on the basolateral membrane by con-focal microscopy, however, the mutant (FLPS) and (PSFL) were predominantly mistargeted to the apical membrane and the cytoplasm, respectively. Functional studies showed that the mutant (PSFL) displayed a remarkably reduced current (p value<0.05 vs wild type). The mutant (PSFL) displayed a more reduced membrane surface expression than the wild type and was co-localized with ER marker. The protein sequence spanning FL motif in kNBC1 C-terminal cytoplasmic tail shows α helical structure, mutants (PLFS) and (PSFL) reduce α-helical contents by circular dichroism study. Reversed FL isn't a constraint for basolateral targeting, but shifting it upstream and downstream are ones. KEYWORDS: Basolateral targeting, mutations with reversed and altered relative position of motif, alpha helical structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.