Target of rapamycin complex 1 (TORC1) and AMP-activated protein kinase (AMPK) antagonistically modulate metabolism and aging. However, how they coordinate to determine longevity and if they act via separable mechanisms is unclear. Here, we show that neuronal AMPK is essential for lifespan extension from TORC1 inhibition, and that TORC1 suppression increases lifespan cell non autonomously via distinct mechanisms from global AMPK activation. Lifespan extension by null mutations in genes encoding raga-1 (RagA) or rsks-1 (S6K) is fully suppressed by neuronal-specific rescues. Loss of RAGA-1 increases lifespan via maintaining mitochondrial fusion. Neuronal RAGA-1 abrogation of raga-1 mutant longevity requires UNC-64/syntaxin, and promotes mitochondrial fission cell nonautonomously. Finally, deleting the mitochondrial fission factor DRP-1 renders the animal refractory to the pro-aging effects of neuronal RAGA-1. Our results highlight a new role for neuronal TORC1 in cell nonautonomous regulation of longevity, and suggest TORC1 in the central nervous system might be targeted to promote healthy aging.
14Target of rapamycin complex 1 (TORC1) and AMP-activated protein kinase (AMPK) 15 antagonistically modulate metabolism and aging. However, how they coordinate to 16 determine longevity and if they act via separable mechanisms is unclear. Here, we show 17 that neuronal AMPK is essential for lifespan extension from TORC1 inhibition, and that 18
One of the most robust and reproducible methods to prolong lifespan in a variety of organisms is inhibition of the mTORC1 (mechanistic target of rapamycin complex 1) pathway. mTORC1 is a metabolic sensor that promotes anabolic growth when nutrients are abundant. Inhibition of mTORC1 extends lifespan, but also frequently has other effects such as stunted growth, slowed development, reduced fertility, and disrupted metabolism. It has long been assumed that suppression of anabolism and resulting phenotypes such as impaired growth and reproduction may be causal to mTORC1 longevity, but this hypothesis has not been directly tested. RAGA-1 is an upstream activator of TORC1. Previous work from our lab using a C. elegans model of mTORC1 longevity, the long-lived raga-1 null mutant, found that the presence of RAGA-1 only in the neurons suppresses longevity of the null mutant. Here, we use the auxin-inducible degradation (AID) system to test whether neuronal mTORC1 inhibition is sufficient for longevity, and whether any changes in lifespan are also linked to stunted growth or fertility. We find that life-long AID of RAGA-1 either in all somatic tissue or only in the neurons of C. elegans is sufficient to extend lifespan. We also find that AID of RAGA-1 or LET-363/mTOR beginning at day 1 of adulthood extends lifespan to a similar extent. Unlike somatic degradation of RAGA-1, neuronal degradation of RAGA-1 does not impair growth, slow development, or decrease the reproductive capacity of the worms. Lastly, while AID of LET-363/mTOR in all somatic cells shortens lifespan, neuronal AID of LET-363/mTOR promotes longevity. This work demonstrates that targeting mTORC1 specifically in the neurons uncouples longevity from growth and reproductive impairments, challenging previously held ideas about the mechanisms of mTORC1 longevity and elucidating the promise of tissue-specific aging therapeutics.
Loss of metabolic homeostasis is one of the hallmarks of the aging process that might contribute to pathogenesis by creating a permissive landscape over which neurodegenerative diseases can take hold. AMPK, a conserved energy sensor, extends lifespan and is protective in some neurodegenerative models. AMPK regulates mitochondrial homeostasis and morphology, however, whether mitochondrial regulation causally links AMPK to protection against loss of neuronal function with aging and diseases remains unclear. Here we use an associative learning protocol in C. elegans as a readout of neuronal function and show that AMPK activation enhances associative learning and prevents age-related loss of learning capacity. AMPK promotes neuronal mitochondrial fusion and driving mitochondrial fragmentation via fzo-1 deletion blocks AMPK's effects on associative learning. Restoring mitochondrial fusion capacity specifically in the neurons rescues learning capacity downstream of AMPK. Finally, AMPK activation rescues neuronal Aβ42 induced loss of associative learning. Overall, our results suggest that targeting neuronal metabolic flexibility may be a viable therapeutic option to restore neuronal function in the context of aging and neurodegenerative diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.