The Bacillus subtilis rec assay has been specially developed to detect DNA-damaging potential in chemicals, with the rationale based on the relative difference of survival of a DNA repair combination proficient strains and its deficient strain, which is interpreted as genotoxicity. The genotoxic activities of newly (1-6) and previously (7-18) synthesized various benzoxazoles and benzimidazoles were analyzed via the B. subtilis rec assay. Newly obtained benzoxazole and benzimidazole derivatives (1-6) were synthesized in the presence of polyphosphoric acid (PPA) and 6 N HCl, respectively to detect their DNA-damaging activities. Among the tested compounds, 6-methyl-2-(o-chlorophenyl)benzoxazole (9), 5-amino-2-(p-methylbenzyl)benzoxazole (4), 5-(p-fluorobenzamido)-2-phenylbenzoxazole (13), and 2-(p-methylaminophenyl)benzoxazole (18) showed genotoxic activities having Rec 50 values of 1.85, 1.74, 1.60, and 1.50 or S-probit values of 0.534, 0.482, 0.460, and 0.357, respectively. On the other hand, 2-(p-bromobenzyl)-5-methylbenzimidazole (6) and 2-benzyl-5-(p-fluorophenylacetamido)-benzoxazole (15) were exhibited a reverse effect that displayed a bacterial growth in the recstrains while there was no any bacterial growth in rec + strains at the same concentration.
We previously synthesized some novel benzoxazole derivatives-containing sulfonamide. In this study, the compounds were investigated for their antitumor activities against the HL-60 human leukemia cells, using the MTT assay. Moreover, quantum chemical calculations using the DFT methods were applied for understanding the difference in antitumor activity. Additionally, molecular docking into active site of the DNA Topo II enzyme was performed on 3QX3. PDB file in order to find out possible mechanism of antitumor effect. According to all obtained results showed that compounds 1b, 1c, and 1d could be potential drug candidates as new antitumor agents, and are promising for cancer therapy.
BackgroundMultiple myeloma (MM), a malignancy of plasma cells, is the second most prevalent hematological cancer. Bortezomib is the most effective chemotherapeutic drug used in treatment. However, drug-resistance prevents success of chemotherapy. One of the factors causing drug-resistance is dysfunction of apoptotic-pathways. This study aimed to evaluate the relationship between expression levels of Bcl-2, Bax, caspase-3 and p-53 genes involved in apoptosis and the development of bortezomib-resistance in MM cell lines.Materials and methodsMultiple myeloma KMS20 (bortezomib-resistant) and KMS28 (bortezomib-sensitive) cell lines were used. 3-[4,5-Dimethylthiazol-2-yl] 1-2,5-diphenyltetrazolium bromide (MTT) assay was performed to determine IC50 values of bortezomib. RNAs were isolated from bortezomib-treated cell lines, followed by cDNA synthesis. Expression levels of the genes were analyzed by using q-Realtime-PCR.ResultsAs a result, Bcl-2/Bax ratio was higher in KMS20 (resistant) cells than in KMS28 (sensitive) cells. Expression of caspase-3 decreased in KMS20-cells, whereas increased in KMS28-cells. The results indicate that apoptosis was suppressed in resistant cells.ConclusionThese findings will enable us to understand the molecular mechanisms leading to drug-resistance in MM cells and to develop new methods to prevent the resistance. Consequently, preventing the development of bortezomib resistance by eliminating the factors which suppress apoptosis may be a new hope for MM treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.