An enormous amount of data has been published in recent years demonstrating melatonin's defensive role against toxic free radicals. In the present study, we examined the role of melatonin as an antioxidant against the effect of continuous light exposure. Rats were divided into three groups. Control rats (group A) were kept under natural conditions whereas other group of rats (group B and C) were exposed to constant light for inhibition of melatonin secretion by the pineal gland. Group C rats also received melatonin via s.c. injection (1 mg x kg(- 1) body weight x day(- 1)). At the end of experiment, all animals were sacrificied by decapitation, serum and tissue samples were removed for determination of malondialdehyde (MDA), a product of lipid peroxidation, conjugated dienes levels and glutathione peroxidase (GSH-Px) activity levels. It was found that lipid peroxidation was increased in the rats which were exposed to constant light. Melatonin injection caused a decrease in lipid peroxidation, especially in the brain. In addition, melatonin application resulted in increased GSH-Px activity, which has an antioxidant effect. Thus, melatonin is not only a direct scavenger of toxic radicals, but also stimulates the antioxidative enzyme GSH-Px activity to detoxify hydroxyl radical produced by constant light exposure.
Aim: To investigate the effect of gabapentin on neural [neuron-specific enolase (NSE)] and glial markers [glial fibrillary acidic protein (GFAP) and S100B] in different brain regions of diabetic rats. Methods: Diabetes was induced by a single intraperitoneal injection of streptozotocine (50 mg/kg body weight). Rats in one diabetic group received gabapentin (50 mg·kg ) and rats in the other diabetic group received vehicle only for 6 weeks. The levels of GFAP, S100B, and NSE were determined by immunoblotting in the hippocampus, cortex, and cerebellum. Lipid peroxidation (LPO as malondialdehyde+ 4-hydroxyalkenals) and glutathione (GSH) levels were also determined in the same brain parts. Results: Total and degraded GFAP content and S100B protein expression in different areas of brain tissues significantly increased in diabetic rats compared to control rats. Similarly, NSE levels were also significantly elevated in hyperglycemic rats. In addition, there was a significant increase in LPO levels in the diabetic rat brain compared to control rat brains. Pretreatment with gabapentin prevented the upregulation of GFAP, S100B, and NSE in all brain regions of diabetic rats. The level of LPO was reduced, but not completely halted, by treatment with gabapentin. Conclusion: These results suggest that diabetes causes glial and neuronal injury, possibly as a result of elevated oxidative stress, and that gabapentin protects neurons and glial cells. Thus, we predict that gabapentin treatment will attenuate the hippocampal and cortical neurodegeneration observed during diabetes mellitus in rats. Key wordsgabapentin; glial fibrillary acidic protein; neurotrophic protein S100beta; phosphopyruvate hydratase; lipid peroxidation 1 Study supported by the Firat University R esear ch Fou nda t ion ( FUB AP Proj ect number 831).
Glial cells provide structural and metabolic support for neurons, and these cells become reactive to any insult to the central nervous system. The streptozotocin (STZ) rat model was used to study glial reactivity and the prevention of gliosis by alpha-lipoic acid (alpha-LA) administration. The expression of glial fibrillary acidic protein (GFAP), S100B protein, and neuron specific enolase (NSE) was determined as well as lipid peroxidation (LPO) and glutathione (GSH) levels in some brain tissues. Western blot analyses showed GFAP, S100B, and NSE levels significantly increased under STZ-induced diabetes in brain, and LPO level increased as well. Administration of alpha-LA reduced the expression both of glial and neuronal markers. In addition, alpha-LA significantly prevented the increase in LPO levels found in diabetic rats. GSH levels were increased by the administration of alpha-LA. This study suggests that alpha-LA prevents neural injury by inhibiting oxidative stress and suppressing reactive gliosis.
The underlying molecular mechanism of carcinogenesis in oral squamous cell carcinoma (OSCC) is poorly understood and appears to be controlled on many genetic, environmental, and hormonal factors. Obestatin and ghrelin, two recently discovered hormones, are co-expressed in endocrine cells. The purpose of this investigation was to examine the immunohistochemical features of OSCCs in relation to the tissue concentration of ghrelin and obestatin. The association between OSCC and Epstein Barr Virus (EBV) status was also explored. The expression of ghrelin and obestatin was examined by immunohistochemistry and immunoassay in oral biopsy specimens: 10 benign squamous epithelial cell samples, 10 microinvasive squamous cell carcinomas, and seven well-differentiated and seven poorly differentiated OSCCs. The presence of EBV was evaluated in these samples using immunohistochemistry. The concentrations of ghrelin and obestatin in tissue homogenates were measured by RIA and ELISA, respectively. Squamous cell carcinomas and benign tissue samples were positive for anti-EBV antibody, and obestatin and ghrelin were shown to be co-expressed in all stratified squamous epithelium samples. Expression of ghrelin and obestatin was decreased or absent in OSCCs in relation to the invasiveness of the carcinoma; ghrelin and obestatin levels in cancerous tissue homogenates were lower than in benign tissue homogenates. These results indicate that the concentrations and distribution of immunoreactive obestatin and ghrelin might be helpful in distinguishing OSCC from benign tumors. Maintaining normal levels of these hormones might be required for regulation of normal cell division. However, detailed studies will be required for better understanding of the complex mechanism of carcinogenesis relating to OSCCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.