Bcl-2 and Mcl-1 proteins play a role in multiple myeloma (MM) cell survival, for which targeted inhibitors are being developed. AT-101 is an oral drug, which disrupts Bcl-2 and Mcl-1 function, impedes mitochondrial bioenergetic processes and induces apoptosis in MM cells. When combined with lenalidomide and dexamethasone (Rd), AT-101 significantly reduced tumor burden in an in vivo xenograft model of MM. These data provided rationale for a phase I/II study to establish the effective dose of AT-101 in combination with Rd (ARd regimen) in relapsed/refractory MM. A total of 10 patients were enrolled, most with high-risk cytogenetics (80%) and prior stem cell transplant (70%). Three patients were lenalidomide-refractory, 2 were bortezomib-refractory and 3 were daratumumab-refractory. The ARd combination was well tolerated with most common grade 3/4 adverse events being cytopenia’s. The overall response rate was 40% and clinical benefit rate was 90%. The median progression free survival was 14.9 months (95% CI 7.1-NE). Patients responsive to ARd showed a decrease in Bcl-2:Bim or Mcl-1:Noxa protein complexes, increased CD8+ T and NK cells and depletion of T and B-regulatory cells. The ARd regimen demonstrated an acceptable safety profile and promising efficacy in patients with relapsed/refractory MM prompting further investigation in additional patients.
Bacterial exposure to antibiotic concentrations below the minimum inhibitory concentration (MIC) may result in a selection window allowing for the rapid evolution of resistance. These sub-MIC concentrations are commonly found in the greater environment. This study aimed to evaluate the adaptive genetic changes in Klebsiella pneumoniae 43816 after prolonged but increasing sub-MIC levels of the common antibiotic cephalothin over a fourteen-day period. Over the course of the experiment, antibiotic concentrations increased from 0.5 μg/mL to 7.5 μg/mL. At the end of this extended exposure, the final adapted bacterial culture exhibited clinical resistance to both cephalothin and tetracycline, altered cellular and colony morphology, and a highly mucoid phenotype. Cephalothin resistance exceeded 125 μg/mL without the acquisition of beta-lactamase genes. Whole genome sequencing identified a series of genetic changes that could be mapped over the fourteen-day exposure period to the onset of antibiotic resistance. Specifically, mutations in the rpoB subunit of RNA Polymerase, the tetR/acrR regulator, and the wcaJ sugar transferase each fix at specific timepoints in the exposure regimen where the MIC susceptibility dramatically increases. These mutations indicate that alterations in the secretion of colanic acid and attachment of colonic acid to LPS, may contribute to the resistant phenotype. These data demonstrate that very low, sub-MIC concentrations of antibiotics can have dramatic impacts on the bacterial evolution of resistance. Additionally, this study demonstrates that beta-lactam resistance can be achieved through sequential accumulation of specific mutations without the acquisition of a beta-lactamase gene.ImportanceBacteria are constantly exposed to low levels of antibiotics in the environment. The impact of this low-level exposure on bacterial evolution is not well understood. In this work, we developed a model to expose Klebsiella pneumoniae to progressive, low doses of the antibiotic cephalothin. After a fourteen-day exposure regimen, our culture exhibited full clinical resistance to this antibiotic without the traditional acquisition of inactivating genes. This culture also exhibited resistance to tetracycline, had a highly mucoid appearance, and exhibited altered, elongated cellular morphology. Whole genome sequencing identified a collection of mutations to the bacterial genome that could be mapped to the emergence of the resistant phenotype. This study demonstrates that antibiotic resistance can be achieved in response to low level antibiotic exposure and without the traditional acquisition of resistance genes. Further, this study identifies new genes that may play a role in the evolution of antibiotic resistant bacteria.
Bacterial exposure to antibiotic concentrations below the minimum inhibitory concentration (MIC) may result in a selection window allowing for the rapid evolution of resistance. These sub-MIC concentrations are commonly found in soils and water supplies in the greater environment. This study aimed to evaluate the adaptive genetic changes in Klebsiella pneumoniae 43816 after prolonged but increasing sub-MIC levels of the common antibiotic cephalothin over a fourteen-day period. Over the course of the experiment, antibiotic concentrations increased from 0.5 μg/mL to 7.5 μg/mL. At the end of this extended exposure, the final adapted bacterial culture exhibited clinical resistance to both cephalothin and tetracycline, altered cellular and colony morphology, and a highly mucoid phenotype. Cephalothin resistance exceeded 125 μg/mL without the acquisition of beta-lactamase genes. Whole genome sequencing identified a series of genetic changes that could be mapped over the fourteen-day exposure period to the onset of antibiotic resistance. Specifically, mutations in the rpoB subunit of RNA Polymerase, the tetR/acrR regulator, and the wcaJ sugar transferase each fix at specific timepoints in the exposure regimen where the MIC susceptibility dramatically increased. These mutations indicate that alterations in the secretion of colanic acid and attachment of colonic acid to LPS may contribute to the resistant phenotype. These data demonstrate that very low sub-MIC concentrations of antibiotics can have dramatic impacts on the bacterial evolution of resistance. Additionally, this study demonstrates that beta-lactam resistance can be achieved through sequential accumulation of specific mutations without the acquisition of a beta-lactamase gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.