Background Finerenone is a nonsteroidal selective mineralocorticoid receptor antagonist that recently demonstrated efficacy in delaying chronic kidney disease progression and reducing cardiovascular events in patients with chronic kidney disease and type 2 diabetes in FIDELIO-DKD, where 5734 patients were randomized 1:1 to receive either titrated finerenone doses of 10 or 20 mg once daily or placebo, with a median follow-up of 2.6 years. Methods Nonlinear mixed-effects population pharmacokinetic models were used to analyze the pharmacokinetics in FIDELIO-DKD, sparsely sampled in all subjects receiving finerenone. Post-hoc model parameter estimates together with dosing histories allowed the computation of individual exposures used in subsequent parametric time-to-event analyses of the primary kidney outcome. Results The population pharmacokinetic model adequately captured the typical pharmacokinetics of finerenone and its variability. Either covariate effects or multivariate forward-simulations in subgroups of interest were contained within the equivalence range of 80–125% around typical exposure. The exposure-response relationship was characterized by a maximum effect model estimating a low half-maximal effect concentration at 0.166 µg/L and a maximal hazard decrease at 36.1%. Prognostic factors for the treatment-independent chronic kidney disease progression risk included a low estimated glomerular filtration rate and a high urine-to-creatinine ratio increasing the risk, while concomitant sodium-glucose transport protein 2 inhibitor use decreased the risk. Importantly, no sodium-glucose transport protein 2 inhibitor co-medication-related modification of the finerenone treatment effect per se could be identified. Conclusions None of the tested pharmacokinetic covariates had clinical relevance in FIDELIO-DKD. Finerenone effects on kidney outcomes approached saturation towards 20 mg once daily and sodium-glucose transport protein 2 inhibitor use provided additive benefits. Supplementary Information The online version contains supplementary material available at 10.1007/s40262-021-01082-2.
To compare the pharmacokinetics (PK) of the progestin levonorgestrel for various routes of administration, an integrated population PK analysis was performed. This analysis integrated data from 10 clinical pharmacology studies and resulted in a single, comprehensive population PK model (and its applications) describing the PK of levonorgestrel and its variability for 6 levonorgestrel-containing contraceptives: 3 intrauterine systems (IUSs; levonorgestrel [LNG]-IUS 20 [Mirena ], LNG-IUS 12 [Kyleena ], and LNG-IUS 8 [Jaydess /Skyla ]); 2 oral contraceptives (the progestin-only pill [Microlut /Norgeston ] and the combined oral contraceptive [Miranova ]); and a subdermal implant (Jadelle ). The levonorgestrel-containing contraceptives administered orally or as an implant act mainly via their systemic (unbound) levonorgestrel exposure, whereas levonorgestrel administered via an IUS is released directly into the uterine cavity, resulting in lower systemic levonorgestrel concentrations. The integrated population PK analysis revealed that the combined oral contraceptive led to the highest levonorgestrel exposure, followed by the progestin-only pill and the implant, which led to similar levonorgestrel exposure, and the IUSs, which led to the lowest levonorgestrel exposure (in decreasing order: LNG-IUS 20, LNG-IUS 12, and LNG-IUS 8). The difference was even more distinct at the end of the indicated duration of use of 3 years (LNG-IUS 8) and 5 years (LNG-IUS 20 and LNG-IUS 12). Comparing the 3 IUSs and the implant, in vivo release rates were highest for the implant, followed by LNG-IUS 20, then LNG-IUS 12, and were lowest for LNG-IUS 8. This is in line with the comparison of the total levonorgestrel concentrations.
Rivaroxaban has been investigated in the EINSTEIN-Jr program for the treatment of acute venous thromboembolism (VTE) in children aged 0 to 18 years and in the UNIVERSE program for thromboprophylaxis in children aged 2 to 8 years with congenital heart disease after Fontanprocedure. Physiologically-based pharmacokinetic (PBPK) and population pharmacokinetic (popPK) modeling were used throughout the pediatric development of rivaroxaban according to the learn-andconfirm paradigm. The development strategy was to match pediatric drug exposures to adult exposure proven to be safe and efficacious. In this analysis, a refined pediatric popPK model for rivaroxaban based on integrated EINSTEIN-Jr data and interim PK data from Part A of the UNIVERSE phase 3 study was developed and the influence of potential covariates and intrinsic factors on rivaroxaban exposure was assessed. The model adequately described the observed pediatric PK data. PK parameters and exposure metrics estimated by the popPK model were compared to the predictions from a previously published pediatric PBPK model for rivaroxaban. 91% of the individual post-hoc clearance estimates were found within the 5 th to 95 th percentile of the PBPK model predictions. In patients below 2 years, however, clearance was underpredicted by the PBPK model. The iterative and integrative use of PBPK and popPK modeling and simulation played a major role in the establishment of the bodyweight-adjusted rivaroxaban dosing regimen that was ultimately confirmed to be a safe and efficacious dosing regimen for children aged 0 to 18 years with acute VTE in the EINSTEIN-Jr phase 3 study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.