Recent studies have proposed that glutamate corelease by mesostriatal dopamine (DA) neurons regulates behavioral activation by psychostimulants. How and when glutamate release by DA neurons might play this role remains unclear. Considering evidence for early expression of the type 2 vesicular glutamate transporter in mesencephalic DA neurons, we hypothesized that this cophenotype is particularly important during development. Using a conditional gene knock-out approach to selectively disrupt the Vglut2 gene in mouse DA neurons, we obtained in vitro and in vivo evidence for reduced growth and survival of mesencephalic DA neurons, associated with a decrease in the density of DA innervation in the nucleus accumbens, reduced activity-dependent DA release, and impaired motor behavior. These findings provide strong evidence for a functional role of the glutamatergic cophenotype in the development of mesencephalic DA neurons, opening new perspectives into the pathophysiology of neurodegenerative disorders involving the mesostriatal DA system.
Themesostriataldopamine(DA)systemcontributestoseveralaspectsofresponsestorewardingsubstancesandisimplicatedinconditionssuch asdrugaddictionandeatingdisorders.AsubsetofDAneuronshasbeenshowntoexpressthetype2Vesicularglutamatetransporter(Vglut2)and may therefore corelease glutamate. In the present study, we analyzed mice with a conditional deletion of Vglut2 in DA neurons (Vglut2 f/f;DAT-Cre ) to address the functional significance of the glutamate-DA cophenotype for responses to cocaine and food reinforcement. Biochemical parameters of striatal DA function were also examined by using DA receptor autoradiography, immediate-early gene quantitative in situ hybridization after cocaine challenge, and DA-selective in vivo chronoamperometry. Mice in which Vglut2 expression had been abrogated in DA neurons displayed enhanced operant self-administration of both high-sucrose food and intravenous cocaine. Furthermore, cocaine seeking maintained by drug-paired cues was increased by 76%, showing that reward-dependent plasticity is perturbed in these mice. In addition, several lines of evidence suggest that adaptive changes occurred in both the ventral and dorsal striatum in the absence of VGLUT2: DA receptor binding was increased, and basal mRNA levels of the DA-induced early genes Nur77 and c-fos were elevated as after cocaine induction. Furthermore, in vivo challenge of the DA system by potassium-evoked depolarization revealed less DA release in both striatal areas. This study demonstrates that absence of VGLUT2 in DA neurons leads to perturbations of reward consumption as well as reward-associated memory, features of particular relevance for addictive-like behavior.
The subthalamic nucleus (STN) is a key area of the basal ganglia circuitry regulating movement. We identified a subpopulation of neurons within this structure that coexpresses Vglut2 and Pitx2, and by conditional targeting of this subpopulation we reduced Vglut2 expression levels in the STN by 40%, leaving Pitx2 expression intact. This reduction diminished, yet did not eliminate, glutamatergic transmission in the substantia nigra pars reticulata and entopeduncular nucleus, two major targets of the STN. The knockout mice displayed hyperlocomotion and decreased latency in the initiation of movement while preserving normal gait and balance. Spatial cognition, social function, and level of impulsive choice also remained undisturbed. Furthermore, these mice showed reduced dopamine transporter binding and slower dopamine clearance in vivo, suggesting that Vglut2-expressing cells in the STN regulate dopaminergic transmission. Our results demonstrate that altering the contribution of a limited population within the STN is sufficient to achieve results similar to STN lesions and high-frequency stimulation, but with fewer side effects.Parkinson disease | deep brain stimulation | vesicular transporter | optogenetics | striatum T he subthalamic nucleus (STN) has long been a structure of interest for researchers and clinicians alike. There is ample evidence that high-frequency stimulation of the STN improves symptoms such as tremor, rigidity, and slowness of movement, so called bradykinesia, in patients with Parkinson disease (see ref. 1 for review), but the mechanism through which this is achieved is still unknown. Some studies suggest that electrical stimulation causes a hyperexcitation of this structure (2), whereas others find evidence that the opposite is true (3-5). Other possible interpretations include the activation of the zona incerta, a neighboring white-matter structure (6) or of fibers coming from the motor cortex (7). Bilateral lesions of the STN improve locomotion (8), a result that is consistent with the inactivation hypothesis. However, previous studies have also found cognitive side effects when using high-frequency stimulation of the STN (9), findings supported by lesion studies in experimental animals, which led to abnormalities in operant tasks involving attention and impulsivity (10, 11). The projections of the STN to other regions help explain the multiple roles of this structure: It sends projections to other targets in the basal ganglia, such as the internal segment of the globus pallidus [also termed the entopeduncular nucleus (EP) in rodents] and the substantia nigra pars reticulata (SNr) (12, 13). The STN is also part of a circuit that includes the prefrontal cortex and the nucleus accumbens (14). It is currently unknown, however, whether these different roles reflect a heterogeneous population of cells, characterized by distinct gene expression. If that is the case, it would allow direct control over each cell population, facilitating the investigation of their respective roles. In rodents, the S...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.