This study characterized the distribution of [ 18 F]-sodium fluoride (NaF) uptake and blood flow in the femur and acetabulum in hip osteoarthritis (OA) patients to find associations between bone remodeling and cartilage composition in the presence of morphological abnormalities using simultaneous positron emission tomography and magnetic resonance imaging (PET/MR), quantitative magnetic resonance imaging (MRI) and femur shape modeling. Ten patients underwent a [ 18 F]-NaF PET/MR dynamic scan of the hip simultaneously with: (i) fast spin-echo CUBE for morphology grading and (ii) T 1ρ /T 2 magnetization-prepared angle-modulated partitioned k-space spoiled gradient echo snapshots for cartilage, bone segmentation, bone shape modeling, and T 1ρ /T 2 quantification. The standardized uptake values (SUVs) and Patlak kinetic parameter (K pat ) were calculated for each patient as PET outcomes, using an automated post-processing pipeline. Shape modeling was performed to extract the variations in bone shapes in the patients. Pearson's correlation coefficients were used to study the associations between bone shapes, PET outcomes, and patient reported pain. Direct associations between quantitative MR and PET evidence of bone remodeling were established in the acetabulum and femur. Associations of shaft thickness with SUV in the femur (p = 0.07) and K pat in the acetabulum (p = 0.02), cam deformity with acetabular score (p = 0.09), osteophytic growth on the femur head with K pat (p = 0.01) were observed. Pain had increased correlations with SUV in the acetabulum (p = 0.14) and femur (p = 0.09) when shaft thickness was accounted for. This study demonstrated the ability of [ 18 F]-NaF PET-MRI, 3D shape modeling, and quantitative MRI to investigate cartilage-bone interactions and bone shape features in hip OA, providing potential investigative tools to diagnose OA.
Objective To assess differences in biochemical composition of the deep cartilage layer in subjects with type 2 diabetes mellitus (T2DM) and nondiabetic controls using UTE (ultra-short echo time) T2* mapping and to investigate the association of vascular health and UTE T2* measurements. Design Ten subjects with T2DM matched for age, sex, and body mass index with 10 nondiabetic controls. A 3D UTE sequence with 6 echo times was acquired using 3T magnetic resonance imaging of the knee. For UTE T2* analysis, the deep cartilage layer was segmented and analyzed in 5 compartments (patella, medial, and lateral femur and tibia). The ankle brachial index (ABI) was obtained in all subjects. Linear regression analyses were used to assess associations of T2DM and UTE T2* relaxation times and the associations of ABI measurements and UTE measurements. Results Compared with nondiabetic controls, T2DM subjects had significantly lower mean T2*-UTE in the patella (mean difference 4.87 ms; 95% confidence interval [CI] 1.09-8.65; P = 0.015), the lateral tibia (mean difference 2.26 ms; 95% CI 0.06-4.45; P = 0.045), and the lateral femur (mean difference 4.96 ms; 95% CI 0.19-9.73; P = 0.043). Independent of diabetic status, subjects with higher ABI values, indicating better vascular health, had higher T2*-UTE of the patella (coefficient 15.2; 95% CI 3.3-21.4; P = 0.017), the medial tibia (coefficient 9.8; 95% CI 1.0-18.6; P = 0.031), and the lateral femur (coefficient 18.8; 95% CI 3.3-34.3; P = 0.021). Conclusions T2*-UTE measurements of the deep cartilage layer were consistently lower in subjects with T2DM and in subjects with impaired vascular health, likely indicating increased mineralization of this layer.
To explore bone shape features that are associated with patellofemoral joint (PFJ) osteoarthritic features. Thirty subjects with PFJ degeneration (six males, 53.2 ± 9.8 years) and 23 controls (12 males, 48.1 ± 10.6 years) were included. Magnetic resonance (MR) assessment was performed to provide bone segmentation, morpholgocial grading, and cartilage relaxation times. In addition, subject self‐reported symptoms were reported. Logistic regressions were used to identify the shape features that were associated with the presence and worsening of PFJ morphological lesions over 3 years, and worsening of self‐reported symptoms. Statistical parametric mapping was used to evaluate the associations between shape features and cartilage relaxation times at 3 years. Results indicated that subjects with PFJ degeneration exhibited a trochlea with longer lateral condyle and shallower trochlear groove (adjusted odds ratio [OR] = 0.30; 95% confidence interval [CI]: 0.10, 0.86; P = .025). Subjects with worsening of PFJ degeneration exhibited a patella with equally distributed facets (adjusted OR = 3.14; 95% CI: 1.05, 9.37; P = .040) and lateral bump (adjusted OR = 0.14; 95% CI: 0.02, 0.83; P = .030). No shape features were associated with worsening of self‐reported symptoms. Elevated T1ρ and T2 times at 3 years were associated with a patella with a lateral hook, equally distributed facets, round and thick as well as a trochlea larger in size (R = 0.38~0.46, P = .015~.025). The study demonstrated the ability of 3D statistical shape modeling to quantify patella and trochlear bone shape features that are associated with the presence and progression of PFJ osteoarthritic features.
High-sensitivity TOF PET showed comparable but still better visual image quality even at a much reduced activity in comparison to lower-sensitivity non-TOF PET. Our data translates to a seven times reduction in either injection dose for the same time or total scan time for the same injected dose. This "ultra-sensitivity" PET system provides a path to clinically acceptable extremely low-dose FDG PET studies (e.g., sub 1 mCi injection or sub-mSv effective dose) or PET studies as short as 1 min/bed (e.g., 6 min of total scan time) to cover whole body without compromising diagnostic performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.