Increased plasma non-esterified fatty acids (NEFAs) link obesity with insulin resistance and type 2 diabetes mellitus (T2DM). However, in contrast to the saturated FA (SFA) palmitic acid, the monounsaturated FA (MUFA) oleic acid elicits beneficial effects on insulin sensitivity, and the dietary palmitic acid:oleic acid ratio impacts diabetes risk in humans. Here we review recent mechanistic insights into the beneficial effects of oleic acid compared with palmitic acid on insulin resistance and T2DM, including its anti-inflammatory actions, and its capacity to inhibit endoplasmic reticulum (ER) stress, prevent attenuation of the insulin signaling pathway, and improve β cell survival. Understanding the molecular mechanisms of the antidiabetic effects of oleic acid may contribute to understanding the benefits of this FA in the prevention or delay of T2DM.
Aims/hypothesis Although the substitution of saturated fatty acids with oleate has been recommended in the management of type 2 diabetes mellitus, the mechanisms by which oleate improves insulin resistance in skeletal muscle cells are not completely known. Here, we examined whether oleate, through activation of AMP-activated protein kinase (AMPK), prevented palmitate-induced endoplasmic reticulum (ER) stress, which is involved in the link between lipid-induced inflammation and insulin resistance. Methods Studies were conducted in mouse C2C12 myotubes and in the human myogenic cell line LHCN-M2. To analyse the involvement of AMPK, activators and inhibitors of this kinase and overexpression of a dominant negative AMPK construct (K45R) were used. Results Palmitate increased the levels of ER stress markers, whereas oleate did not. In palmitate-exposed cells incubated with a lower concentration of oleate, the effects of palmitate were prevented. The induction of ER stress markers by palmitate was prevented by the presence of the AMPK activators AICAR and A-769662. Moreover, the ability of oleate to prevent palmitate-induced ER stress and inflammation (nuclear factor-kappa B [NF-κB] DNA-binding activity and expression and secretion of IL6) as well as insulinstimulated Akt phosphorylation and 2-deoxyglucose uptake was reversed in the presence of the AMPK inhibitor compound C or by overexpression of a dominant negative AMPK construct. Finally, palmitate reduced phospho-AMPK levels, whereas this was not observed in oleateexposed cells or in palmitate-exposed cells supplemented with oleate. Conclusions/interpretation Overall, these findings indicate that oleate prevents ER stress, inflammation and insulin resistance in palmitate-exposed skeletal muscle cells by activating AMPK.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.