An efficient synthesis of aryl substituted cyclic sulfonimidamides designed as chiral nonplanar heterocyclic carboxylic acid bioisosteres is described. The cyclic sulfonimidamide ring system could be prepared in two steps from a trifluoroacetyl protected sulfinamide and methyl ester protected amino acids. By varying the amino acid, a range of different C-3 substituted sulfonimidamides could be prepared. The compounds could be further derivatized in the aryl ring using standard cross-coupling reactions to yield highly substituted cyclic sulfonimidamides in excellent yields. The physicochemical properties of the final compounds were examined and compared to those of the corresponding carboxylic acid and tetrazole derivatives. The unique nonplanar shape in combination with the relatively strong acidity (pK a 5-6) and the ease of modifying the chemical structure to fine-tune the physicochemical properties suggest that this heterocycle can be a valuable addition to the range of available carboxylic acid isosteres.
Liver X receptors (LXRs) are attractive drug targets for cardiovascular disease treatment due to their role in regulating cholesterol homeostasis and immunity. The anti-atherogenic properties of LXRs have prompted development of synthetic ligands, but these cause major adverse effects—such as increased lipogenesis—which are challenging to dissect from their beneficial activities. Here we show that LXR compounds displaying diverse functional responses in animal models induce distinct receptor conformations. Combination of hydrogen/deuterium exchange mass spectrometry and multivariate analysis allowed identification of LXR regions differentially correlating with anti-atherogenic and lipogenic activities of ligands. We show that lipogenic compounds stabilize active states of LXRα and LXRβ while the anti-atherogenic expression of the cholesterol transporter ABCA1 is associated with the ligand-induced stabilization of LXRα helix 3. Our data indicates that avoiding ligand interaction with the activation helix 12 while engaging helix 3 may provide directions for development of ligands with improved therapeutic profiles.
Suzuki-Miyaura cross-coupling reactions of heteroaromatics catalyzed by palladium supported in the cavities of amino-functionalized silicious mesocellular foam is presented.The nanopalladium catalyst effectively couples not only heteroaryl halides with boronic acids, but also heteroarylboronic acids, boronate esters, potassium trifluoroborates, MIDA boronates and triolborates, producing a wide range of heterobiaryls in good to excellent yields.Furthermore, the heterogenous palladium nanocatalyst can easily be removed from the reaction mixture by filtration and recycled several times with minimal loss in activity. This catalyst provides an alternative, environmentally friendly, low-leaching process for the preparation of heterobiaryls.
The oxidative rearrangement of 1,3-diketones is an underexplored alternative to enolate chemistry in the synthesis of all-carbon quaternary carboxylates. Mechanistic understanding enabled the discovery of a faster and more effective reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.