Right ventricular (RV) dysfunction is the main determinant of mortality in patients with pulmonary arterial hypertension (PAH) and while inflammation is pathogenic in PAH, there is limited information on the role of RV inflammation in PAH. Sulforaphane (SFN), a potent Nrf2 activator, has significant anti-inflammatory effects and facilitates cardiac protection in preclinical diabetic models. Therefore, we hypothesized that SFN might play a comparable role in reducing RV and pulmonary inflammation and injury in a murine PAH model. We induced PAH using SU5416 and 10% hypoxia (SuHx) for 4 wk in male mice randomized to SFN at a daily dose of 0.5 mg/kg 5 days per week for 4 wk or to vehicle control. Transthoracic echocardiography was performed to characterize chamber-specific ventricular function during PAH induction. At 4 wk, we measured RV pressure and relevant measures of histology and protein and gene expression. SuHx induced progressive RV, but not LV, diastolic and systolic dysfunction, and RV and pulmonary remodeling, fibrosis, and inflammation. SFN prevented SuHx-induced RV dysfunction and remodeling, reduced RV inflammation and fibrosis, upregulated Nrf2 expression and its downstream gene NQO1, and reduced the inflammatory mediator leucine-rich repeat and pyrin domain-containing 3 (NLRP3). SFN also reduced SuHx-induced pulmonary vascular remodeling, inflammation, and fibrosis. SFN alone had no effect on the heart or lungs. Thus, SuHx-induced RV and pulmonary dysfunction, inflammation, and fibrosis can be attenuated or prevented by SFN, supporting the rationale for further studies to investigate SFN and the role of Nrf2 and NLRP3 pathways in preclinical and clinical PAH studies. NEW & NOTEWORTHY Pulmonary arterial hypertension (PAH) in this murine model (SU5416 + hypoxia) is associated with early changes in right ventricular (RV) diastolic and systolic function. RV and lung injury in the SU5416 + hypoxia model are associated with markers for fibrosis, inflammation, and oxidative stress. Sulforaphane (SFN) alone for 4 wk has no effect on the murine heart or lungs. Sulforaphane (SFN) attenuates or prevents the RV and lung injury in the SUF5416 + hypoxia model of PAH, suggesting that Nrf2 may be a candidate target for strategies to prevent or reverse PAH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.