Brain-derived neurotrophic factor (BDNF) has an important role in regulating maintenance, growth and survival of neurons. However, the main source of circulating BDNF in response to exercise is unknown. To identify whether the brain is a source of BDNF during exercise, eight volunteers rowed for 4 h while simultaneous blood samples were obtained from the radial artery and the internal jugular vein. To further identify putative cerebral region(s) responsible for BDNF release, mouse brains were dissected and analysed for BDNF mRNA expression following treadmill exercise. In humans, a BDNF release from the brain was observed at rest (P < 0.05), and increased two-to threefold during exercise (P < 0.05). Both at rest and during exercise, the brain contributed 70-80% of circulating BDNF, while that contribution decreased following 1 h of recovery. In mice, exercise induced a three-to fivefold increase in BDNF mRNA expression in the hippocampus and cortex, peaking 2 h after the termination of exercise. These results suggest that the brain is a major but not the sole contributor to circulating BDNF. Moreover, the importance of the cortex and hippocampus as a source for plasma BDNF becomes even more prominent in response to exercise. Brain-derived neurotrophic factor (BDNF) is a key protein in regulating maintenance, growth and even survival of neurons (Mattson et al. 2004). Brain-derived neurotrophic factor also influences learning and memory (Tyler et al. 2002), and brain tissue from patients with Alzheimer's disease and clinical depression exhibit low expression of BDNF (Connor et al. 1997;Karege et al. 2002). Brainderived neurotrophic factor has also been identified as a key component of the hypothalamic pathway that controls body weight and energy homeostasis (Wisse & Schwartz, 2003). Obese phenotypes are found in BDNFheterozygous mice and are associated with hyperphagia, hyperleptinaemia, hyperinsulinaemia and hyperglycaemia (Lyons et al. 1999). In addition, BDNF reduces food intake and lowers blood glucose in diabetic mice (Nakagawa et al. 2000). In humans, similar symptoms are associated with * P. Rasmussen and P. Brassard contributed equally to the manuscript. the functional loss of one copy of the BDNF gene and with a mutation in the BDNF receptor Ntrk2 gene (Yeo et al. 2004;Gray et al. 2006).Physically and socially more complex housing leads to increased neurogenesis, improved learning and less weight gain in rats (Young et al. 1999;Cao et al. 2004) associated with consistent up-regulation of BDNF expression, and a direct role for BDNF has recently been reported (Cao et al. 2009). A better understanding of therapeutic actions aimed at increasing BDNF levels, such as exercise (Neeper et al. 1995), is of clinical relevance. It is well known that BDNF synthesis is centrally mediated and activity dependent (Johnson & Mitchell, 2003) and that exercise enhances BDNF transcription in the brain (Oliff et al. 1998). In addition, exercise induces brain uptake of insulin-like growth factor 1, which is a prerequisite for ...
Non-technical summary In young men, sympathetic nerve activity is directly related to the level of vasoconstrictor tone in the peripheral vasculature. However, in young women this relationship does not exist, suggesting that certain factors (potentially related to the female sex hormones) offset the transfer of sympathetic nerve activity into vasoconstrictor tone in this population. In the present study we show that, in young women, the β-adrenergic receptors (which cause vasodilatation in response to noradrenaline) blunt the vasoconstrictor effect of resting sympathetic nerve activity in young women. This mechanism does not occur in young men or postmenopausal women. It is possible that the β-adrenergic receptors may partially protect young women against the sometimes harmful effects of high sympathetic nerve activity. This may explain why the risk of developing hypertension is greater in young men and postmenopausal women (who have very high sympathetic nerve activity) compared to young women.Abstract In men, muscle sympathetic nerve activity (MSNA) is positively related to total peripheral resistance (TPR) and inversely related to cardiac output (CO). However, this relationship was not observed in young women. We aimed to investigate whether simultaneous β-adrenergic stimulation offsets this balance in young women. Furthermore, we aimed to examine whether the ability of the β-adrenergic receptors to offset the transduction of MSNA into vasoconstrictor tone was lost in postmenopausal women. We measured MSNA (peroneal microneurography), arterial pressure (brachial line), CO (Modelflow), TPR and changes in forearm vascular conductance (FVC) to increasing doses of noradrenaline (NA; 2, 4 and 8 ng (100 ml) −1 min −1 ) before and after systemic β-blockade with propranolol in 17 young men, 17 young women and 15 postmenopausal (PM) women. The percentage and absolute change in FVC to the last two doses of NA were greater during β-blockade in young women (P < 0.05), whereas the change in FVC was similar before and during β-blockade in young men and PM women (P > 0.05). Before β-blockade there was no relationship of MSNA to TPR or mean arterial pressure (MAP) in young women. Following β-blockade, MSNA became positively related to TPR (r = 0.59, P < 0.05) and MAP (r = 0.58, P < 0.05). In the PM women and young men, MSNA was positively associated with TPR. β-Blockade had no effect on this relationship. Our data suggest that the β-adrenergic receptors offset α-adrenergic vasoconstriction in young women but not young men or PM women. These findings may explain in part the tendency for blood pressure to rise after menopause in women.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.