This review considers the two possible causal directions between mathematics anxiety (MA) and poor mathematics performance. Either poor maths performance may elicit MA (referred to as the Deficit Theory), or MA may reduce future maths performance (referred to as the Debilitating Anxiety Model). The evidence is in conflict: the Deficit Theory is supported by longitudinal studies and studies of children with mathematical learning disabilities, but the Debilitating Anxiety Model is supported by research which manipulates anxiety levels and observes a change in mathematics performance. It is suggested that this mixture of evidence might indicate a bidirectional relationship between MA and mathematics performance (the Reciprocal Theory), in which MA and mathematics performance can influence one another in a vicious cycle.
Mathematics anxiety (MA) can be observed in children from primary school age into the teenage years and adulthood, but many MA rating scales are only suitable for use with adults or older adolescents. We have adapted one such rating scale, the Abbreviated Math Anxiety Scale (AMAS), to be used with British children aged 8–13. In this study, we assess the scale's reliability, factor structure, and divergent validity. The modified AMAS (mAMAS) was administered to a very large (n = 1746) cohort of British children and adolescents. This large sample size meant that as well as conducting confirmatory factor analysis on the scale itself, we were also able to split the sample to conduct exploratory and confirmatory factor analysis of items from the mAMAS alongside items from child test anxiety and general anxiety rating scales. Factor analysis of the mAMAS confirmed that it has the same underlying factor structure as the original AMAS, with subscales measuring anxiety about Learning and Evaluation in math. Furthermore, both exploratory and confirmatory factor analysis of the mAMAS alongside scales measuring test anxiety and general anxiety showed that mAMAS items cluster onto one factor (perceived to represent MA). The mAMAS provides a valid and reliable scale for measuring MA in children and adolescents, from a younger age than is possible with the original AMAS. Results from this study also suggest that MA is truly a unique construct, separate from both test anxiety and general anxiety, even in childhood.
IntroductionIndividuals with high levels of mathematics anxiety are more likely to have other forms of anxiety, such as general anxiety and test anxiety, and tend to have some math performance decrement compared to those with low math anxiety. However, it is unclear how the anxiety forms cluster in individuals, or how the presence of other anxiety forms influences the relationship between math anxiety and math performance.MethodWe measured math anxiety, test anxiety, general anxiety and mathematics and reading performance in 1720 UK students (year 4, aged 8–9, and years 7 and 8, aged 11–13). We conducted latent profile analysis of students’ anxiety scores in order to examine the developmental change in anxiety profiles, the demographics of each anxiety profile and the relationship between profiles and academic performance.ResultsAnxiety profiles appeared to change in specificity between the two age groups studied. Only in the older students did clusters emerge with specifically elevated general anxiety or academic anxiety (test and math anxiety). Our findings suggest that boys are slightly more likely than girls to have elevated academic anxieties relative to their general anxiety. Year 7/8 students with specifically academic anxiety show lower academic performance than those who also have elevated general anxiety.ConclusionsThere may be a developmental change in the specificity of anxiety and gender seems to play a strong role in determining one’s anxiety profile. The anxiety profiles present in our year 7/8 sample, and their relationships with math performance, suggest a bidirectional relationship between math anxiety and math performance.
This project has been funded by the Nuffield Foundation, although the views expressed are those of the authors and not necessarily those of the Foundation. The project also received funding from the James S McDonnel Foundation. The authors thank Timothy Myers, Jack Clearman and Swiya Nath for help with data collection. The study described formed part of the PhD thesis of Amy Devine at the University of Cambridge. The authors thank Dr Ann Dowker and Prof. Melissa Hines for feedback on the thesis which informed revisions of this article.
We review how stress induction, time pressure manipulations and math anxiety can interfere with or modulate selection of problem-solving strategies (henceforth “strategy selection”) in arithmetical tasks. Nineteen relevant articles were identified, which contain references to strategy selection and time limit (or time manipulations), with some also discussing emotional aspects in mathematical outcomes. Few of these take cognitive processes such as working memory or executive functions into consideration. We conclude that due to the sparsity of available literature our questions can only be partially answered and currently there is not much evidence of clear associations. We identify major gaps in knowledge and raise a series of open questions to guide further research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.