We present the first limits on the Epoch of Reionization 21 cm H I power spectra, in the redshift range z=7.9-10.6, using the Low-Frequency Array (LOFAR) High-Band Antenna (HBA). In total, 13.0 hr of data were used from observations centered on the North Celestial Pole. After subtraction of the sky model and the noise bias, we detect a non-zero 56 13 mK D < ( ) at k=0.053 h cMpc −1 in the range z=9.6-10.6. The excess variance decreases when optimizing the smoothness of the direction-and frequency-dependent gain calibration, and with increasing the completeness of the sky model. It is likely caused by (i) residual side-lobe noise on calibration baselines, (ii) leverage due to nonlinear effects, (iii) noise and ionosphere-induced gain errors, or a combination thereof. Further analyses of the excess variance will be discussed in forthcoming publications.
A new upper limit on the 21-cm signal power spectrum at a redshift of z ≈ 9.1 is presented, based on 141 hours of data obtained with the Low-Frequency Array (LOFAR). The analysis includes significant improvements in spectrally-smooth gain-calibration, Gaussian Process Regression (GPR) foreground mitigation and optimally-weighted power spectrum inference. Previously seen 'excess power' due to spectral structure in the gain solutions has markedly reduced but some excess power still remains with a spectral correlation distinct from thermal noise. This excess has a spectral coherence scale of 0.25 − 0.45 MHz and is partially correlated between nights, especially in the foreground wedge region. The correlation is stronger between nights covering similar local sidereal times. A best 2-σ upper limit of ∆ 2 21 < (73) 2 mK 2 at k = 0.075 h cMpc −1 is found, an improvement by a factor ≈ 8 in power compared to the previously reported upper limit. The remaining excess power could be due to residual foreground emission from sources or diffuse emission far away from the phase centre, polarization leakage, chromatic calibration errors, ionosphere, or low-level radio-frequency interference. We discuss future improvements to the signal processing chain that can further reduce or even eliminate these causes of excess power.
We present a detailed overview of the cosmological surveys that we aim to carry out with Phase 1 of the Square Kilometre Array (SKA1) and the science that they will enable. We highlight three main surveys: a medium-deep continuum weak lensing and low-redshift spectroscopic HI galaxy survey over 5 000 deg2; a wide and deep continuum galaxy and HI intensity mapping (IM) survey over 20 000 deg2 from $z = 0.35$ to 3; and a deep, high-redshift HI IM survey over 100 deg2 from $z = 3$ to 6. Taken together, these surveys will achieve an array of important scientific goals: measuring the equation of state of dark energy out to $z \sim 3$ with percent-level precision measurements of the cosmic expansion rate; constraining possible deviations from General Relativity on cosmological scales by measuring the growth rate of structure through multiple independent methods; mapping the structure of the Universe on the largest accessible scales, thus constraining fundamental properties such as isotropy, homogeneity, and non-Gaussianity; and measuring the HI density and bias out to $z = 6$ . These surveys will also provide highly complementary clustering and weak lensing measurements that have independent systematic uncertainties to those of optical and near-infrared (NIR) surveys like Euclid, LSST, and WFIRST leading to a multitude of synergies that can improve constraints significantly beyond what optical or radio surveys can achieve on their own. This document, the 2018 Red Book, provides reference technical specifications, cosmological parameter forecasts, and an overview of relevant systematic effects for the three key surveys and will be regularly updated by the Cosmology Science Working Group in the run up to start of operations and the Key Science Programme of SKA1.
We introduce a new implementation of the fastica algorithm on simulated Low Frequency Array Epoch of Reionization data with the aim of accurately removing the foregrounds and extracting the 21‐cm reionization signal. We find that the method successfully removes the foregrounds with an average fitting error of 0.5 per cent and that the 2D and 3D power spectra are recovered across the frequency range. We find that for scales above several point spread function scales, the 21‐cm variance is successfully recovered though there is evidence of noise leakage into the reconstructed foreground components. We find that this blind independent component analysis technique provides encouraging results without the danger of prior foreground assumptions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.