Although intermetallics with a B2-type crystal structure are typically brittle, a class of B2 intermetallics that demonstrates unusually high ductility has been reported. A set of recently developed B2-like quaternary precious metal-rare earth alloys also includes compositions with significant ductility. To predict ductility in these systems, we have adapted a computational energy-based metric based on slip systems and relative stability of planar defects, developed to predict ductility in B2 binary systems, for use with quaternary B2-like alloys. The computational metric successfully predicts the experimentally-determined ductility or brittleness of 15 B2-like quaternary precious metal-rare earth and refractory alloys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.