Serotonin is a key neurotransmitter involved in numerous physiological processes and serves as an important precursor for manufacturing bioactive indoleamines and alkaloids used in the treatment of human pathologies. In humans, serotonin sensing and signaling can occur by 12 G protein-coupled receptors (GPCRs) coupled to Gα proteins. In yeast, human serotonin GPCRs coupled to Gα proteins have previously been shown to function as whole-cell biosensors of serotonin. However, systematic characterization of serotonin biosensing modalities between variant serotonin GPCRs and application thereof for high-resolution serotonin quantification is still awaiting. To systematically assess GPCR signaling in response to serotonin, we characterized reporter gene expression at two different pHs of a 144-sized library encoding all 12 human serotonin GPCRs in combination with 12 different Gα proteins engineered in yeast. From this screen, we observed changes in the biosensor sensitivities of >4 orders of magnitude. Furthermore, adopting optimal biosensing designs and pH conditions enabled high-resolution high-performance liquid chromatography-validated sensing of serotonin produced in yeast. Lastly, we used the yeast platform to characterize 19 serotonin GPCR polymorphisms found in human populations. While major differences in signaling were observed among the individual polymorphisms when studied in yeast, a cross-comparison of selected variants in mammalian cells showed both similar and disparate results. Taken together, our study highlights serotonin biosensing modalities of relevance to both biotechnological and potential human health applications.
SummarySerotonin is a key neurotransmitter involved in numerous physiological processes and serves as an important precursor for manufacturing bioactive indoleamines and alkaloids used in the treatment of human pathologies. In humans, serotonin sensing and signaling can occur by 12 G protein-coupled receptors (GPCRs) coupled to G proteins. To systematically assess serotonin GPCR signaling, we characterized reporter gene expression of a 144-sized library encoding all 12 human serotonin GPCRs in combination with 12 different Gα proteins in yeast exposed to serotonin. For the 5-HT4 receptor, we observe 25- and 64-fold changes in EC50 values and dynamic reporter gene outputs, respectively. Furthermore, we show that optimal biosensing designs enable high-resolution sensing of serotonin produced in yeast, as well as provide a platform for characterization of 19 serotonin GPCR polymorphisms found in human populations. Taken together, our study highlights serotonin biosensing modalities of relevance to both biotechnological and human health applications.HighlightsHuman serotonin G protein-coupled receptors display promiscuous Gα coupling in yeastGα-coupled serotonin receptors display up to 64-fold changes in reporter expression outputDifferences in Gα protein evokes 25- and 2-fold difference in EC50 and sensitivity, respectivelySerotonin receptor 5-HT4 and human SNP variants display physiologically relevant EC50 values in yeast5-HT4 can be applied for high-resolution biosensing of serotonin produced from yeast
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.