A climate data record of global sea surface temperature (SST) spanning 1981–2016 has been developed from 4 × 1012 satellite measurements of thermal infra-red radiance. The spatial area represented by pixel SST estimates is between 1 km2 and 45 km2. The mean density of good-quality observations is 13 km−2 yr−1. SST uncertainty is evaluated per datum, the median uncertainty for pixel SSTs being 0.18 K. Multi-annual observational stability relative to drifting buoy measurements is within 0.003 K yr−1 of zero with high confidence, despite maximal independence from in situ SSTs over the latter two decades of the record. Data are provided at native resolution, gridded at 0.05° latitude-longitude resolution (individual sensors), and aggregated and gap-filled on a daily 0.05° grid. Skin SSTs, depth-adjusted SSTs de-aliased with respect to the diurnal cycle, and SST anomalies are provided. Target applications of the dataset include: climate and ocean model evaluation; quantification of marine change and variability (including marine heatwaves); climate and ocean-atmosphere processes; and specific applications in ocean ecology, oceanography and geophysics.
The atmospheric response to Arctic and Antarctic sea ice changes typical of the present day and coming decades is investigated using the Hadley Centre global climate model (HadGEM3). The response is diagnosed from ensemble simulations of the period 1979 to 2009 with observed and perturbed sea ice concentrations. The experimental design allows the impacts of ocean–atmosphere coupling and the background atmospheric state to be assessed. The modeled response can be very different to that inferred from statistical relationships, showing that the response cannot be easily diagnosed from observations. Reduced Arctic sea ice drives a local low pressure response in boreal summer and autumn. Increased Antarctic sea ice drives a poleward shift of the Southern Hemisphere midlatitude jet, especially in the cold season. Coupling enables surface temperature responses to spread to the ocean, amplifying the atmospheric response and revealing additional impacts including warming of the North Atlantic in response to reduced Arctic sea ice, with a northward shift of the Atlantic intertropical convergence zone and increased Sahel rainfall. The background state controls the sign of the North Atlantic Oscillation (NAO) response via the refraction of planetary waves. This could help to resolve differences in previous studies, and potentially provides an “emergent constraint” to narrow the uncertainties in the NAO response, highlighting the need for future multimodel coordinated experiments.
The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system generates global, daily, gap-filled foundation sea surface temperature (SST) fields from satellite data and in situ observations. The SSTs have uncertainty information provided with them and an ice concentration (IC) analysis is also produced. Additionally, a global, hourly diurnal skin SST product is output each day. The system is run in near real time to produce data for use in applications such as numerical weather prediction. Data production is monitored routinely and outputs are available from the Copernicus Marine Environment Monitoring Service (CMEMS; marine.copernicus.eu). As an operational product, the OSTIA system is continuously under development. For example, since the original descriptor paper was published, the underlying data assimilation scheme that is used to generate the foundation SST analyses has been updated. Various publications have described these changes but a full description is not available in a single place. This technical note focuses on the production of the foundation SST and IC analyses by OSTIA and aims to provide a comprehensive description of the current system configuration.
Sea surface temperature (SST) datasets have been generated from satellite observations for the period 1991-2010, intended for use in climate science applications. Attributes of the datasets specifically relevant to climate applications are: first, independence from in situ observations; second, effort to ensure homogeneity and stability through the time-series; third, context-specific uncertainty estimates attached to each SST value; and, fourth, provision of estimates of both skin SST (the fundamental measurement, relevant to air-sea fluxes) and SST at standard depth and local time (partly model mediated, enabling comparison with historical in situ datasets). These attributes in part reflect requirements solicited from climate data users prior to and during the project. Datasets consisting of SSTs on satellite swaths are derived from the Along-Track Scanning Radiometers (ATSRs) and Advanced Very High Resolution Radiometers (AVHRRs). These are then used as sole SST inputs to a daily, spatially complete, analysis SST product, with a latitude-longitude resolution of 0.05°C and good discrimination of ocean surface thermal features. A product user guide is available, linking to reports describing the datasets' algorithmic basis, validation results, format, uncertainty information and experimental use in trial climate applications. Future versions of the datasets will span at least 1982-2015, better addressing the need in many climate applications for stable records of global SST that are at least 30 years in length.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.