In this paper we present three studies focusing on the effect of different sound models in interactive sonification of bodily movement. We hypothesized that a sound model characterized by continuous smooth sounds would be associated with other movement characteristics than a model characterized by abrupt variation in amplitude and that these associations could be reflected in spontaneous movement characteristics. Three subsequent studies were conducted to investigate the relationship between properties of bodily movement and sound: (1) a motion capture experiment involving interactive sonification of a group of children spontaneously moving in a room, (2) an experiment involving perceptual ratings of sonified movement data and (3) an experiment involving matching between sonified movements and their visualizations in the form of abstract drawings. In (1) we used a system constituting of 17 IR cameras tracking passive reflective markers. The head positions in the horizontal plane of 3–4 children were simultaneously tracked and sonified, producing 3–4 sound sources spatially displayed through an 8-channel loudspeaker system. We analyzed children's spontaneous movement in terms of energy-, smoothness- and directness-index. Despite large inter-participant variability and group-specific effects caused by interaction among children when engaging in the spontaneous movement task, we found a small but significant effect of sound model. Results from (2) indicate that different sound models can be rated differently on a set of motion-related perceptual scales (e.g., expressivity and fluidity). Also, results imply that audio-only stimuli can evoke stronger perceived properties of movement (e.g., energetic, impulsive) than stimuli involving both audio and video representations. Findings in (3) suggest that sounds portraying bodily movement can be represented using abstract drawings in a meaningful way. We argue that the results from these studies support the existence of a cross-modal mapping of body motion qualities from bodily movement to sounds. Sound can be translated and understood from bodily motion, conveyed through sound visualizations in the shape of drawings and translated back from sound visualizations to audio. The work underlines the potential of using interactive sonification to communicate high-level features of human movement data.
No abstract
In this paper we present a study on the effects of auditory-and haptic feedback in a virtual throwing task performed with a pointbased haptic device. The main research objective was to investigate if and how task performance and perceived intuitiveness is affected when interactive sonification and/or haptic feedback is used to provide real-time feedback about a movement performed in a 3D virtual environment. Emphasis was put on task solving efficiency and subjective accounts of participants' experiences of the multimodal interaction in different conditions. The experiment used a within-subjects design in which the participants solved the same task in different conditions: visual-only, visuohaptic, audiovisual and audiovisuohaptic. Two different sound models were implemented and compared. Significantly lower error rates were obtained in the audiovisuohaptic condition involving movement sonification based on a physical model of friction, compared to the visual-only condition. Moreover, a significant increase in perceived intuitiveness was observed for most conditions involving haptic and/or auditory feedback, compared to the visual-only condition. The main finding of this study is that multimodal feedback can not only improve perceived intuitiveness of an interface but that certain combinations of haptic feedback and movement sonification can also contribute with performance-enhancing properties. This highlights the importance of carefully designing feedback combinations for interactive applications.
Research on Accessible Digital Musical Instruments (ADMIs) has highlighted the need for participatory design methods, i.e., to actively include users as co-designers and informants in the design process. However, very little work has explored how pre-verbal children with Profound and Multiple Disabilities (PMLD) can be involved in such processes. In this paper, we apply in-depth qualitative and mixed methodologies in a case study with four students with PMLD. Using Participatory Design with Proxies (PDwP), we assess how these students can be involved in the customization and evaluation of the design of a multisensory music experience intended for a large-scale ADMI. Results from an experiment focused on communication of musical haptics highlighted the diversity in employed interaction strategies used by the children, accessibility limitations of the current multisensory experience design, and the importance of using a multifaceted variety of qualitative and quantitative methods to arrive at more informed conclusions when applying a design with proxies methodology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.