Ribosomes are the factories in cells that synthesize proteins. When cells grow faster, there are not enough ribosomes to keep up with the demand for faster protein synthesis without individual ribosomes becoming more productive.
SummaryFaster growing cells must make proteins more quickly. This occurs in part through increasing total ribosome abundance. However, the productivity of individual ribosomes also increases, almost doubling via an unknown mechanism. To investigate, we model both physical transport and chemical reactions among ensembles of individual molecules involved in translation elongation in Escherichia coli. We predict that the Damköhler number, the ratio of transport latency to reaction latency, for translation elongation is ~4; physical transport of individual ternary complexes accounts for ~80% of elongation latency. We also model how molecules pack closer together as growth quickens. Although denser cytoplasm both decreases transport distances and hinders motion, we predict that decreasing distance wins out, offering a simple mechanism for how individual elongating ribosomes become more productive as growth quickens. We also quantify how crowding imposes a physical limit on the performance of self-mixing molecular systems and likely undergirds cellular behavior more broadly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.