We consider fluid in a channel of finite height. There is a circular hole in the channel bottom, through which fluid of a lower density is injected and rises to form a plume. Viscous boundary layers close to the top and bottom of the channel are assumed to be so thin that the viscous fluid effectively slips along each of these boundaries. The problem is solved using a novel spectral method, in which Hankel transforms are first used to create a steady-state axisymmetric (inviscid) background flow that exactly satisfies the boundary conditions. A viscous correction is then added, so as to satisfy the time-dependent Boussinesq Navier–Stokes equations within the fluid, leaving the boundary conditions intact. Results are presented for the “lazy” plume, in which the fluid rises due only to its own buoyancy, and we study in detail its evolution with time to form an overturning structure. Some results for momentum-driven plumes are also presented, and the effect of the upper wall of the channel on the evolution of the axisymmetric plume is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.