Disrupted in Schizophrenia 1 (DISC1) was identified as a potential susceptibility gene for schizophrenia due to its disruption by a balanced t(1;11) (q42;q14) translocation, which has been shown to cosegregate with major psychiatric disease in a large Scottish family. We have recently presented evidence that DISC1 exists in a neurodevelopmentally regulated protein complex with Nudel. In this study, we report the protein expression profile of DISC1 in the adult and developing mouse brain utilizing immunohistochemistry and quantitative Western blot. In the adult mouse brain, DISC1 is expressed in neurons within various brain areas including the olfactory bulb, cortex, hippocampus, hypothalamus, cerebellum and brain stem. During development, DISC1 protein is detected at all stages, from E10 to 6 months old, with two significant peaks of protein expression of a DISC1 isoform at E13.5 and P35. Interestingly, these time points correspond to critical stages during mouse development, the active neurogenesis period in the developing brain and the period of puberty. Together, these results suggest that DISC1 may play a critical role in brain development, consistent with the neurodevelopmental hypothesis of the etiology of schizophrenia.
The Edg (endothelial differentiation gene) receptors are recently discovered G-protein coupled receptors which are activated by endogenous lysophospholipids. The cellular activities mediated by Edg receptors are reminiscent of those normally associated with Trk receptor activation and include modulation of cell growth, differentiation, proliferation and migration as well as apoptotic and cytoskeletal effects. In this study we have investigated immunohistochemically the distribution of one family member, the Edg2 receptor, within the adult rat brain and shown the protein expression to be most prominent in white matter tract regions. This suggests a possible role for the Edg2 receptor in nerve cell myelination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.