Analogous to learning and memory storage, long-term potentiation (LTP) is divided into induction and maintenance phases. Testing the hypothesis that the mechanism of LTP maintenance stores information requires reversing this mechanism in vivo and finding out whether long-term stored information is lost. This was not previously possible. Recently however, persistent phosphorylation by the atypical protein kinase C isoform, protein kinase Mzeta (PKMz), has been found to maintain late LTP in hippocampal slices. Here we show that a cell-permeable PKMz inhibitor, injected in the rat hippocampus, both reverses LTP maintenance in vivo and produces persistent loss of 1-day-old spatial information. Thus, the mechanism maintaining LTP sustains spatial memory.
PKMζ is a persistently active PKC isoform proposed to maintain late-LTP and long-term memory. But late-LTP and memory are maintained without PKMζ in PKMζ-null mice. Two hypotheses can account for these findings. First, PKMζ is unimportant for LTP or memory. Second, PKMζ is essential for late-LTP and long-term memory in wild-type mice, and PKMζ-null mice recruit compensatory mechanisms. We find that whereas PKMζ persistently increases in LTP maintenance in wild-type mice, PKCι/λ, a gene-product closely related to PKMζ, persistently increases in LTP maintenance in PKMζ-null mice. Using a pharmacogenetic approach, we find PKMζ-antisense in hippocampus blocks late-LTP and spatial long-term memory in wild-type mice, but not in PKMζ-null mice without the target mRNA. Conversely, a PKCι/λ-antagonist disrupts late-LTP and spatial memory in PKMζ-null mice but not in wild-type mice. Thus, whereas PKMζ is essential for wild-type LTP and long-term memory, persistent PKCι/λ activation compensates for PKMζ loss in PKMζ-null mice.DOI:
http://dx.doi.org/10.7554/eLife.14846.001
A widely accepted notion for a process underlying memory formation is that learning changes the efficacy of synapses by the mechanism of synaptic plasticity. While there is compelling evidence of changes in synaptic efficacy observed after learning, demonstration of persistent synaptic changes accompanying memory has been elusive. We report that acquisition of a hippocampus and long-term potentiation dependent memory for places persistently changes the function of CA1 synapses. Using extracellular recordings we measured CA3-CA1 and EC-CA1 synaptic responses and found robust changes in the CA3-CA1 pathway after memory training. Crucially, these changes in synaptic function lasted at least a month and coincided with the persistence of long-term place memories; the changes were only observed in animals that expressed robust memory, and not in animals with poor memory recall. Interestingly, our findings were observed at the level of populations of synapses; suggesting that memory formation recruits widespread synaptic circuits and persistently reorganizes their function to store information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.