The strong synergistic adsorption of mixed polymer/surfactant (P/S) systems at the oil/water interface shows promise for applications such as oil remediation and emulsion stabilization, especially with respect to the formation of tunable mesoscopic multilayers. There is some evidence that a combination of dodecyltrimethylammonium bromide (DTAB) and sodium poly(styrenesulfonate) (PSS) exhibits the adsorption of a secondary P/S layer, though the structure of this layer has long eluded researchers. The focus of this study is to determine whether the DTAB-assisted adsorption of PSS at the oil/water interface occurs as a single layer or with subsequent multilayers. The study presented uses vibrational sum-frequency spectroscopy and interfacial tensiometry to determine the degree of PSS adsorption and orientation of its charged groups relative to the interface at three representative concentrations of DTAB. At low and intermediate DTAB concentrations, a single mixed DTAB/PSS monolayer adsorbs at the oil/water interface. No PSS adsorbs above the system critical micelle concentration. The interfacial charge is found to be similar to that of P/S complexes solvated in the aqueous solution. The surface adsorbate and P/S complexes in the bulk both exhibit a charge inversion at around the same DTAB concentration. This study demonstrates the importance of techniques which can differentiate between coadsorbing species and calls into question current models of P/S adsorption at an oil/water interface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.