CRISPR-Cas systems offer versatile technologies for genome engineering, yet their implementation has been outpaced by ongoing discoveries of new Cas nucleases and anti-CRISPR proteins. Here, we present the use of E. coli cell-free transcription-translation (TXTL) systems to vastly improve the speed and scalability of CRISPR characterization and validation. TXTL can express active CRISPR machinery from added plasmids and linear DNA, and TXTL can output quantitative dynamics of DNA cleavage and gene repression-all without protein purification or live cells. We used TXTL to measure the dynamics of DNA cleavage and gene repression for single- and multi-effector CRISPR nucleases, predict gene repression strength in E. coli, determine the specificities of 24 diverse anti-CRISPR proteins, and develop a fast and scalable screen for protospacer-adjacent motifs that was successfully applied to five uncharacterized Cpf1 nucleases. These examples underscore how TXTL can facilitate the characterization and application of CRISPR technologies across their many uses.
Members of the MscS superfamily of mechanosensitive ion channels function as osmotic safety valves, releasing osmolytes under increased membrane tension. MscS homologs exhibit diverse topology and domain structure, and it has been proposed that the more complex members of the family might have novel regulatory mechanisms or molecular functions. Here, we present a study of MscS-Like (MSL)10 from Arabidopsis thaliana that supports these ideas. High-level expression of MSL10-GFP in Arabidopsis induced small stature, hydrogen peroxide accumulation, ectopic cell death, and reactive oxygen species-and cell death-associated gene expression. Phosphomimetic mutations in the MSL10 N-terminal domain prevented these phenotypes. The phosphorylation state of MSL10 also regulated its ability to induce cell death when transiently expressed in Nicotiana benthamiana leaves but did not affect subcellular localization, assembly, or channel behavior. Finally, the N-terminal domain of MSL10 was sufficient to induce cell death in tobacco, independent of phosphorylation state. We conclude that the plant-specific N-terminal domain of MSL10 is capable of inducing cell death, this activity is regulated by phosphorylation, and MSL10 has two separable activities-one as an ion channel and one as an inducer of cell death. These findings further our understanding of the evolution and significance of mechanosensitive ion channels.
Precise genome editing of plants has the potential to reshape global agriculture through the targeted engineering of endogenous pathways or the introduction of new traits. To develop a CRISPR nuclease-based platform that would enable higher efficiencies of precise gene insertion or replacement, we screened the Cpf1 nucleases from Francisella novicida and Lachnospiraceae bacterium ND2006 for their capability to induce targeted gene insertion via homology directed repair. Both nucleases, in the presence of a guide RNA and repairing DNA template flanked by homology DNA fragments to the target site, were demonstrated to generate precise gene insertions as well as indel mutations at the target site in the rice genome. The frequency of targeted insertion for these Cpf1 nucleases, up to 8%, is higher than most other genome editing nucleases, indicative of its effective enzymatic chemistry. Further refinements and broad adoption of the Cpf1 genome editing technology have the potential to make a dramatic impact on plant biotechnology.
1CRISPR-based genome editing is an enabling technology with potential to dramatically transform multiple industries. Identification of additional editing tools will be imperative for broad adoption and application of this technology. A novel Type V, Class 2 CRISPR nuclease system was identified from Microgenomates and Smithella bacterial species (CRISPR from Microgenomates and Smithella, Cms1). This system was shown to efficiently generate indel mutations in the major crop plant rice (Oryza sativa). Cms1 are distinct from other Type V nucleases, are smaller than most other CRISPR nucleases, do not require a tracrRNA, and have an AT-rich protospacer-adjacent motif site requirement. A total of four novel Cms1 nucleases across multiple bacterial species were shown to be functional in a eukaryotic system. This is a major expansion of the Type V CRISPR effector protein toolbox and increases the diversity of options available to researchers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.