those dying in hospital with obstructed airways had less severe non-respiratory injuries than those dying with clear airways. The same tendency could be discerned when the lowest 10% were considered, although the numbers of patients were very small. These results suggest strongly that airway obstruction contributes to the death of some patients in the first 72 hours of hospital care. They do not indict airway management in those who die before they reach hospital. Discussion This study is presented as much for its method as for its results. The introduction of the ISS will do much to help to measure performance that has hitherto been the subject of speculation. Improvement in the data retrieval systems available to accident units is, however, essential if full use is to be made of auditing techniques. Because no retrieval system was available this work was based on cumulative mortality rather than the much more satisfactory concept of mortality ratio. It follows that no observations could be made on the undoubtedly important role of airway management in the survivors. The policy adopted for the prehospital care of accident victims remained constant throughout the five years under review (1971-5). Ambulance crews were trained in basic resuscitation techniques and called out hospital staff only to care for trapped patients. The results would suggest that this quality of care is optimum with regard to airway management and that no improvement in survival could be expected if more advanced training were introduced. In contrast, airway management during the first 72 hours in hospital does not appear to be satisfactory.
This study examined the role of intrarenal ANG II in the renal vascular reactivity changes occurring in the remaining kidney undergoing adaptation following contralateral nephrectomy. Renal blood flow responses to intrarenal injections of ANG II (0.25 to 5 ng) were measured in anesthetized euvolemic male Wistar rats 1, 4, 12, and 24 wk after uninephrectomy (UNX) or sham procedure (SHAM). At week 4, renal vasoconstriction induced by 2 ng ANG II was greater in UNX (69 +/- 5%) than in SHAM rats (50 +/- 3%; P < 0.01). This response was inhibited, by 50 and 66%, and by 20 and 25%, in SHAM and UNX rats, after combined injections of ANG II and losartan, or PD-123319 (P < 0.05), respectively. Characteristics of ANG II receptor binding in isolated preglomerular resistance vessels were similar in the two groups. After prostanoid inhibition with indomethacin, renal vasoconstriction was enhanced by 42 +/- 8% (P < 0.05), only in SHAM rats, whereas after 20-HETE inhibition with HET0016, it was reduced by 53 +/- 16% (P < 0.05), only in UNX rats. These differences vanished after concomitant prostanoid and 20-HETE inhibition in the two groups. After UNX, renal cortical protein expression of cytochrome P-450 2c23 isoform (CYP2c23) and cyclooxygenase-1 (COX-1) was unaltered, but it was decreased for CYP4a and increased for COX-2. In conclusion, renal vascular reactivity to ANG II was significantly increased in the postuninephrectomy adapted kidney, independently of protein expression, but presumably involving interactions between 20-HETE and COX in the renal microvasculature and changes in the paracrine activity of ANG II and 20-HETE.
In cultured vascular muscle cells, nitric oxide (NO) has been shown to inhibit voltage-dependent Ca(2+) channels, which are involved in renal blood flow (RBF) autoregulation. Therefore, our purpose was to specify in vivo the effects of this interaction on RBF autoregulation. To do so, hemodynamics were investigated in anesthetized rats during Ca(2+) channel blockade before or after acute NO synthesis inhibition. Rats were treated intravenously with vehicle (n = 10), 0.3 mg/kg body wt N(G)-nitro-L-arginine-methyl ester (L-NAME; n = 7), 4.5 microg. kg body wt(-1). min(-1) nifedipine (n = 8) alone, or with nifedipine infused before (n = 8), after (n = 8), or coadministered with L-NAME (n = 10). Baseline renal vascular resistance (RVR) averaged 14.0 +/- 1.2 resistance units and did not change after vehicle. RVR increased or decreased significantly by 27 and 29% after L-NAME or nifedipine, respectively. Nifedipine reversed, but did not prevent, RVR increase after or coadministered with L-NAME. RBF autoregulation was maintained after L-NAME, but the autoregulatory pressure limit (P(A)) was significantly lowered by 15 mmHg. Nifedipine pretreatment or coadministration with L-NAME limited P(A) resetting or suppressed autoregulation at higher doses. Results were similar with verapamil. Intrarenal blockade of Ca(2+)-activated K(+) channels also prevented autoregulatory resetting by L-NAME (n = 8). These findings suggest NO inhibits voltage-dependent Ca(2+) channels and thereby modulates RBF autoregulatory efficiency.
1. The renin-angiotensin system may be involved in the compensatory adaptations occurring after the reduction of renal mass and during the consecutive changes leading to chronic renal failure. We therefore investigated the regulation of angiotensin II receptors in two models of renal hypertrophy in the rat: hypertrophy following uninephrectomy (UNx) or subtotal nephrectomy (STNx). The level of angiotensin type 1 (AT1A-R and AT1B-R) and type 2 (AT2-R) receptor mRNA was quantified by competitive reverse transcription-polymerase chain reaction (RT-PCR) in specific renal zones and the intrarenal distribution of angiotensin II receptors was analysed by immunohistochemistry. 2. In the UNx rats, AT1-R mRNA expression was not modified in the cortex or in the inner stripe of the outer medulla of the residual kidney at any time after the surgery (1, 4 and 12 weeks). In contrast, AT1-R mRNA expression was significantly reduced in these zones in STNx rats (-33% and -40%, respectively). This downregulation was organ-specific, as AT1-R mRNA levels were not modified in the liver. The proportions of AT1-R subtype (AT1A and AT1B) mRNA were unchanged by UNx or STNx. Very low levels of AT2-R mRNA were found in the cortex of all groups. Immunostaining revealed a similar localization of AT1-R in mesangial cells, proximal tubule, basolateral membrane of thick ascending limb, in both models of hypertrophy. AT1-R labelling was also detected in the apical membrane of intercalated cells of cortical collecting ducts. 3. This differential mRNA expression of angiotensin II receptors during compensatory hypertrophy and renal injury suggests that the development of renal hypertrophy is independent of AT1-R and AT2-R gene expression levels.
A significant renal vasodilation was observed previously after an acute cyclo-oxygenase (COX) inhibition induced with indomethacin. Because this effect could be due to COX-dependent intrarenal metabolization of arachidonic acid through cytochrome P450 (CYP450) pathways, the aim of the present study was to investigate, in vivo, possible interactions between COX and CYP450 mono-oxygenases. Mean arterial pressure (MAP) and renal blood flow (RBF), using an electromagnetic flow transducer for RBF evaluation, were measured continuously in 71 anaesthetized euvolaemic rats. Appropriate solvents (vehicle), 3 mg/kg indomethacin, 17-octadecynoic acid (17-ODYA; 2 mmol/L), either miconazole (MI; 1.5 mmol/L) or N-methylsulphonyl-6-(2-propargyloxyphenyl)hexanamide (MS-PPOH; 5 mg/kg) and N'-hydroxyphenylformamidine (HET0016; 5 or 10 mg/kg) were administered to inhibit either COX, CYP450 mono-oxygenases, epoxygenases or hydroxylase, respectively. The CYP450 and COX inhibitors were also combined as follows: 17-ODYA/indomethacin, MI (or MS-PPOH)/indomethacin, HET0016/indomethacin and indomethacin/HET0016. Mean arterial pressure and RBF were not modified by vehicle, 17-ODYA or MI (or MS-PPOH). However, MAP decreased slightly (P < 0.05; paired t-test, 5 d.f.) and RBF increased transiently (P < 0.05; anova, 5 d.f.) after HET0016. In contrast, MAP decreased by 10 mmHg (P < 0.05) and RBF increased by 10% (P < 0.05) after indomethacin. This enhancement was prevented by 17-ODYA or MI (or MS-PPOH), but not by HET0016. Moreover, RBF increased step-wise to 21% in the indomethacin/HET0016 experiment (P < 0.05). Consequently, changes from baseline in renal vascular resistance differed among treatments, averaging -2 +/- 3 (vehicle), -13 +/- 3 (indomethacin; P < 0.05 vs vehicle), -4 +/- 3 (17-ODYA/indomethacin), -3 +/- 4 (MI or MS-PPOH/indomethacin), -15 +/- 3 (HET0016/indomethacin; P < 0.05) and -22 +/- 4% (indomethacin/HET0016; P < 0.05). In conclusion, these results demonstrate that the renal vasodilation induced by indomethacin can be prevented by prior inhibition of CYP450 mono-oxygenases and further suggest that the CYP450 epoxygenases pathway may prevail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.