Emerging fungal diseases can drive amphibian species to local extinction. During 2010–2016, we examined 1,921 urodeles in 3 European countries. Presence of the chytrid fungus Batrachochytrium salamandrivorans at new locations and in urodeles of different species expands the known geographic and host range of the fungus and underpins its imminent threat to biodiversity.
Escalating occurrences of emerging infectious diseases underscore the importance of understanding microbiome-pathogen interactions. The amphibian cutaneous microbiome is widely studied for its potential to mitigate disease-mediated amphibian declines. Other microbial interactions in this system, however, have been largely neglected in the context of disease outbreaks. European fire salamanders have suffered dramatic population crashes as a result of the newly emerged (). In this paper, we investigate microbial interactions on multiple fronts within this system. We show that wild, healthy fire salamanders maintain complex skin microbiotas containing -inhibitory members, but these community are present at a remarkably low abundance. Through experimentation, we show that increasing bacterial densities of-inhibiting bacteria via daily addition slowed disease progression in fire salamanders. Additionally, we find that experimental- infection elicited subtle changes in the skin microbiome, with selected opportunistic bacteria increasing in relative abundance resulting in septicemic events that coincide with extensive destruction of the epidermis. These results suggest that fire salamander skin, in natural settings, maintains bacterial communities at numbers too low to confer sufficient protection against and, in fact, the native skin microbiota can constitute a source of opportunistic bacterial pathogens that contribute to pathogenesis. By shedding light on the complex interaction between the microbiome and a lethal pathogen, these data put the interplay between skin microbiomes and a wildlife disease into a new perspective.
Recent worldwide declines and extinctions of amphibian populations have been attributed to chytridiomycosis, a disease caused by the pathogenic fungus Batrachochytrium dendrobatidis (Bd). Until recently, Bd was thought to be the only Batrachochytrium species that infects amphibians; however a newly described species, Batrachochytrium salamandrivorans (Bs), is linked to die-offs in European fire salamanders (Salamandra salamandra). Little is known about the distribution, host range, or origin of Bs. In this study, we surveyed populations of an aquatic salamander that is declining in the United States, the eastern hellbender (Cryptobranchus alleganiensis alleganiensis), for the presence of Bs and Bd. Skin swabs were collected from a total of 91 individuals in New York, Pennsylvania, Ohio, and Virginia, and tested for both pathogens using duplex qPCR. Bs was not detected in any samples, suggesting it was not present in these hellbender populations (0% prevalence, 95% confidence intervals of 0.0–0.04). Bd was found on 22 hellbenders (24% prevalence, 95% confidence intervals of 0.16 ≤ 0.24 ≤ 0.34), representing all four states. All positive samples had low loads of Bd zoospores (12.7 ± 4.9 S.E.M. genome equivalents) compared to other Bd susceptible species. More research is needed to determine the impact of Batrachochytrium infection on hellbender fitness and population viability. In particular, understanding how hellbenders limit Bd infection intensity in an aquatic environment may yield important insights for amphibian conservation. This study is among the first to evaluate the distribution of Bs in the United States, and is consistent with another, which failed to detect Bs in the U.S. Knowledge about the distribution, host-range, and origin of Bs may help control the spread of this pathogen, especially to regions of high salamander diversity, such as the eastern United States.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.