SUMMARYDifferences in dermal mast cell prevalence for adult mice of different strains have been reported previously. In this study, the dermal mast cell prevalence for BALB/c and C57BL/6 mice at 6 weeks of age was similar but as BALB/c mice matured from 6 to 10 weeks of age, their dermal mast cell prevalence halved. In contrast, there was no signi®cant difference in the dermal mast cell prevalence of 6-and 10-week-old C57BL/6 mice. These differences determined the degree of susceptibility of BALB/c and C57BL/6 mice of different ages to UVB (UV radiation of wavelength 280±320 nm)-induced systemic immunosuppression. Expression of the receptor for stem cell factor, Kit protein, was examined on mast cells under conditions in which the dermal mast cell prevalence varied. A signi®cant correlation was observed between Kit expression by mast cells from adult BALB/c, DBA/2 and C57BL/6 mice and dermal mast cell prevalence. In BALB/c mice, mast cell Kit expression decreased as the mice matured from 6 to 10 weeks of age and correlated with the reduction in dermal mast cell numbers. Kit levels on dermal mast cells from C57BL/6 mice were consistently higher than on mast cells from BALB/c mice although signi®cant reductions in Kit were also measured with ageing from 6 to 10 weeks. We hypothesize that regardless of the extent of Kit expression, the dermal mast cell populations were maximally expanded in C57BL/6 mice. We suggest that BALB/c mice of 6 and 10 weeks of age are useful hosts in which to quantitatively evaluate mast cell involvement in a range of functional assays involving skin.
Many studies have implicated cis-urocanic acid (cis-UCA) in UVB-induced immunomodulation. The strongest evidence came from studies in mice whereby a cis-UCA antibody blocked UVB-induced suppression of delayed-type hypersensitivity responses. Furthermore, in several studies, the cis-UCA antibody at least partially reversed UVB suppression of contact hypersensitivity responses. Previous reports suggested that cis-UCA was immunomodulatory through its effects on keratinocytes, Langerhans cells, fibroblasts, T lymphocytes, natural killer cells and monocytes/macrophages. As dermal mast cells were recently demonstrated to be critical to UVB-induced systemic suppression of certain delayed-type and contact hypersensitivity responses, we investigated whether they were involved in the processes by which cis-UCA was immunomodulatory. Not only was there a correlation between dermal mast cell prevalence and the degree of susceptibility of different strains of mice to the immunomodulatory effects of cis-UCA, there was also a functional link. Mast cell-depleted Wf/Wf mice were rendered susceptible to immunomodulation by cis-UCA injected subcutaneously only after their dorsal skin had been reconstituted with bone marrow-derived mast cell precursors. These studies suggest that mast cells are critical to the processes by which cis-UCA suppresses systemic contact hypersensitivity responses to the hapten, trinitrochlorobenzene, in mice.
veolar macrophages (AM) may be exposed to a range of CO 2 and pH levels depending on their location in the alveoli and the health of the lung. Cytokines produced by AM contribute to inflammation in acute lung injury (ALI). Current ventilatory practices for the management of ALI favor low tidal volumes, which can give rise to increases in CO2 and changes in pH of the alveolar microenvironment. Here we examined the effect of CO2 on cytokine release from LPS-stimulated rat AM. AM were incubated for 1-4 h under different atmospheric gas mixtures ranging from 2.5-20% CO2. To distinguish between effects of pH and CO 2, the culture media were also buffered to pH 7.2 with NaHCO 3. Cell metabolic activity, but not cell viability, decreased and increased significantly after 4 h at 20 and 2.5% CO 2, respectively. Increasing CO 2 decreased TNF-␣ secretion but had no effect on lysate TNF-␣. Buffering the media abated the effects of CO 2 on TNF-␣ secretion. CO 2 increased cytokine-induced neutrophil chemoattractant factor-1 secretion only when the pH was buffered to 7.2. Effects of CO2 on cytokine responses were reversible. In conclusion, the effects of CO 2 on cytokine lysate levels and/or secretion in AM are cytokine specific and, depending on both the cytokine and the immediate
Ultraviolet B radiation is immunosuppressive by multiple mechanisms. In interleukin-4-/- mice, ultraviolet B radiation was not able to suppress delayed-type hypersensitivity or contact hypersensitivity responses when the sensitizing antigen was applied to nonirradiated sites. In contrast, ultraviolet B significantly suppressed contact hypersensitivity responses to haptens applied to irradiated sites in interleukin-4-/- mice. In mast cell depleted Wf/Wf mice, ultraviolet B radiation also significantly suppressed contact hypersensitivity responses to sensitizing antigens applied to irradiated but not to unirradiated sites. In both interleukin-4-/- mice and Wf/Wf mice, the mast cell product, histamine, was immunosuppressive implicating mast cells as the dysfunctional cell in interleukin-4-/- mice. The prevalence of dermal mast cells was similar in wild-type and interleukin-4-/- mice. Dermal mast cells of interleukin-4-/- mice, however, express very low levels of c-kit and did not significantly degranulate in response to ultraviolet B. Ultraviolet radiation induced significant and similar levels of serum interleukin-10 in wild-type and interleukin-4-/- mice. We conclude that interleukin-4 indirectly affects ultraviolet B suppression of contact hypersensitivity and delayed-type hypersensitivity responses to sensitizing antigens applied at sites other than those irradiated by providing a critical differentiative signal for dermal mast cells. This study further emphasizes the central role of mast cells in the initial processes by which ultraviolet B radiation is immunomodulatory for immune responses to sensitizing antigens applied to nonirradiated sites.
Many studies have implicated cis-urocanic acid (cis-UCA) in UVB-induced immunomodulation. The strongest evidence came from studies in mice whereby a cis-UCA antibody blocked UVB-induced suppression of delayed-type hypersensitivity responses. Furthermore, in several studies, the cis-UCA antibody at least partially reversed UVB suppression of contact hypersensitivity responses. Previous reports suggested that cis-UCA was immunomodulatory through its effects on keratinocytes, Langerhans cells, fibroblasts, T lymphocytes, natural killer cells and monocytes/macrophages. As dermal mast cells were recently demonstrated to be critical to UVB-induced systemic suppression of certain delayed-type and contact hypersensitivity responses, we investigated whether they were involved in the processes by which cis-UCA was immunomodulatory. Not only was there a correlation between dermal mast cell prevalence and the degree of susceptibility of different strains of mice to the immunomodulatory effects of cis-UCA, there was also a functional link. Mast cell-depleted Wf/Wf mice were rendered susceptible to immunomodulation by cis-UCA injected subcutaneously only after their dorsal skin had been reconstituted with bone marrow-derived mast cell precursors. These studies suggest that mast cells are critical to the processes by which cis-UCA suppresses systemic contact hypersensitivity responses to the hapten, trinitrochlorobenzene, in mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.