We present a study of the metal-enriched cool halo gas traced by Mg ii absorption around 228 galaxies at z ∼ 0.8 − 1.5 within 28 quasar fields from the MUSE Analysis of Gas around Galaxies (MAGG) survey. We observe no significant evolution in the Mg ii equivalent width versus impact parameter relation and in the Mg ii covering fraction compared to surveys at z ≲ 0.5. The stellar mass, along with distance from galaxy centre, appears to be the dominant factor influencing the Mg ii absorption around galaxies. With a sample that is 90% complete down to a star formation rate of ≈0.1 $\rm M_\odot yr^{-1}$PLXINSERT-, and up to impact parameters ≈250 − 350 kpc from quasars, we find that the majority ($67^{+12}_{-15}$% or 14/21) of the Mg ii absorption systems are associated with more than one galaxy. The complex distribution of metals in these richer environments adds substantial scatter to previously-reported correlations. Multiple galaxy associations show on average five times stronger absorption and three times higher covering fraction within twice the virial radius than isolated galaxies. The dependence of Mg ii absorption on galaxy properties disfavours the scenario in which a widespread intra-group medium dominates the observed absorption. This leaves instead gravitational interactions among group members or hydrodynamic interactions of the galaxy haloes with the intra-group medium as favoured mechanisms to explain the observed enhancement in the Mg ii absorption strength and cross section in rich environments.
We present the design, methods, and first results of the MUSE Analysis of Gas around Galaxies (MAGG) survey, a large programme on the Multi Unit Spectroscopic Explorer (MUSE) instrument at the Very Large Telescope (VLT) which targets 28 z > 3.2 quasars to investigate the connection between optically-thick gas and galaxies at z ∼ 3 − 4. MAGG maps the environment of 52 strong absorption line systems at z ≳ 3, providing the first statistical sample of galaxies associated with gas-rich structures in the early Universe. In this paper, we study the galaxy population around a very metal poor gas cloud at z ≈ 3.53 towards the quasar J124957.23−015928.8. We detect three Lyα emitters within $\lesssim 200~\rm km~s^{-1}$ of the cloud redshift, at projected separations $\lesssim 185~\rm ~kpc$ (physical). The presence of star-forming galaxies near a very metal-poor cloud indicates that metal enrichment is still spatially inhomogeneous at this redshift. Based on its very low metallicity and the presence of nearby galaxies, we propose that the most likely scenario for this LLS is that it lies within a filament which may be accreting onto a nearby galaxy. Taken together with the small number of other LLSs studied with MUSE, the observations to date show a range of different environments near strong absorption systems. The full MAGG survey will significantly expand this sample and enable a statistical analysis of the link between gas and galaxies to pin down the origin of these diverse environments at z ≈ 3 − 4.
We present the goals, design, and first results of the MUSE Ultra Deep Field (MUDF) survey, a large programme using the Multi Unit Spectroscopic Explorer (MUSE) instrument at the ESO Very Large Telescope. The MUDF survey is collecting ≈ 150 hours on-source of integral field optical spectroscopy in a 1.5 × 1.2 arcmin 2 region which hosts several astrophysical structures along the line of sight, including two bright z ≈ 3.2 quasars with close separation (≈ 500 kpc). Following the description of the data reduction procedures, we present the analysis of the galaxy environment and gaseous properties of seven groups detected at redshifts 0.5 < z < 1.5, spanning a large dynamic range in halo mass, log(M h /M ) ≈ 11 − 13.5. For four of the groups, we find associated Mg ii absorbers tracing cool gas in high-resolution spectroscopy of the two quasars, including one case of correlated absorption in both sightlines at distance ≈ 480 kpc. The absorption strength associated with the groups is higher than what has been reported for more isolated galaxies of comparable mass and impact parameters. We do not find evidence for widespread cool gas giving rise to strong absorption within these groups. Combining these results with the distribution of neutral and ionised gas seen in emission in lower-redshift groups, we conclude that gravitational interactions in the group environment strip gas from the galaxy haloes into the intragroup medium, boosting the cross section of cool gas and leading to the high fraction of strong Mg ii absorbers that we detect.
The Mycobacterium tuberculosis complex includes bovine and human strains of the tuberculosis bacillus, including Mycobacterium tuberculosis, Mycobacterium bovis and the Mycobacterium bovis BCG vaccine strain. M. bovis has evolved from a M. tuberculosis-like ancestor and is the ancestor of the BCG vaccine. The pathogens demonstrate distinct differences in virulence, host range and metabolism, but the role of metabolic differences in pathogenicity is poorly understood. Systems biology approaches have been used to investigate the metabolism of M. tuberculosis, but not to probe differences between tuberculosis strains. In this study genome scale metabolic networks of M. bovis and M. bovis BCG were constructed and interrogated, along with a M. tuberculosis network, to predict substrate utilisation, gene essentiality and growth rates. The models correctly predicted 87-88% of high-throughput phenotype data, 75-76% of gene essentiality data and in silico-predicted growth rates matched measured rates. However, analysis of the metabolic networks identified discrepancies between in silico predictions and in vitro data, highlighting areas of incomplete metabolic knowledge. Additional experimental studies carried out to probe these inconsistencies revealed novel insights into the metabolism of these strains. For instance, that the reduction in metabolic capability observed in bovine tuberculosis strains, as compared to M. tuberculosis, is not reflected by current genetic or enzymatic knowledge. Hence, the in silico networks not only successfully simulate many aspects of the growth and physiology of these mycobacteria, but also provide an invaluable tool for future metabolic studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.