Campylobacter spp. are frequently carried by poultry, but they are not believed to cause significant disease in these animals. Modern poultry breeds have been selected to grow rapidly under intensive conditions, but recently, consumers have moved toward purchasing birds produced in higher welfare, free-range or organic systems. Birds reared in these systems tend to be a slower growing breed and are fed a different diet. Birds reared in such systems are stocked at a lower density compared with the standard conventional broilers, and they have access to environmental enrichment, such as perches. In previous research, these slower growing birds have been shown to have different levels of Campylobacter carriage in commercial rearing conditions, but the reasons for, and effect of, these different levels are unknown; is it the bird breed, diet, or environmental conditions? In this study, experimental flocks of fast- and slow-growing breeds of broiler chickens were reared to a standard commercial slaughter weight, with their weight gain being measured during the growing period. At 21 days, birds were either infected with Campylobacter jejuni or given a placebo as control. Cohorts of birds were euthanatized at various intervals, and samples were taken for examination for Campylobacter. The fast-growing birds gained weight more rapidly than the slow-growing birds. By 2 days postinfection (dpi), C. jejuni was detected in the caeca and by enrichment from the liver and spleen samples from both breeds of birds. Low-level colonization persisted in the spleen and liver samples but was undetectable by 28 dpi. Fast- and slow-growing birds did not show detectably different levels of Campylobacter carriage. Infection with C. jejuni affected the incidence of hock marks and pododermatitis in both breeds of birds, but the differences were greater with the fast-growing breed compared with the uninfected control birds. In addition, the incidence of pododermatitis was significantly higher in Campylobacter-positive fast-growing birds than in their slower-growing counterparts. The results show that infection with Campylobacter can have an indirect welfare effect on birds via increased incidence of hock marks and pododermatitis.
f Campylobacter jejuni is a commensal bacterium in the intestines of animals and birds and a major cause of food-borne gastroenteritis in humans worldwide. Here we show that exposure to pancreatic amylase leads to secretion of an ␣-dextran by C. jejuni and that a secreted protease, Cj0511, is required. Exposure of C. jejuni to pancreatic amylase promotes biofilm formation in vitro, increases interaction with human epithelial cell lines, increases virulence in the Galleria mellonella infection model, and promotes colonization of the chicken ileum. We also show that exposure to pancreatic amylase protects C. jejuni from stress conditions in vitro, suggesting that the induced ␣-dextran may be important during transmission between hosts. This is the first evidence that pancreatic amylase functions as an interkingdom signal in an enteric microorganism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.