The definitive version is available at www.blackwell-synergy.com. Copyright Blackwell Publishing DOI : 10.1111/j.1365-2966.2006.10751.
(Abridged) We present a study of the optical spectra of a sample of eight star-forming nuclear rings and the nuclei of their host galaxies. The spectra were obtained with the ISIS spectrograph on the William Herschel Telescope and cover a wide range in wavelength, enabling the measurement of several stellar absorption features and gas emission lines. We compared the strength of the absorption lines to a variety of population synthesis models for the star-formation history in the nuclear rings, including also the contribution of the older bulge and disc stellar components. We find that the stars in our sample of nuclear rings have most likely formed over a prolonged period of time characterised by episodic bursts of star-formation activity. Constant star formation is firmly ruled out by the data, whereas a one-off formation event is an unlikely explanation for a common galactic component such as nuclear rings. We have used emission-line measurements to constrain the physical conditions of the ionised gas within the rings. Emission in all nuclear rings originates from HII-regions with electron densities typical for these kinds of objects, and that the rings are characterised by values for the gas metallicity ranging from slightly below to just above solar. As 20% of nearby spiral galaxies hosts nuclear rings that are currently forming massive stars, our finding of an episodic star formation history in nuclear rings implies that a significant population remains to be identified of young nuclear rings that are not currently in a massive star formation phase.Comment: 15 pages, 10 figures, accepted for publication on MNRA
The SAURON integral-field spectrograph was used to observe the central area of the barred spiral galaxy M100 (NGC 4321). M100 contains a nuclear ring of star formation, fueled by gas channeled inward by the galaxy's bar. We present maps of emission-line strengths, absorption-line strength indices, and the gas velocity dispersion across the field. The Hb emission is strongest in the ring, along two curved bar dust lanes and at the ends of the bar. The Mg b absorption-line strength shows a younger population of stars within the ring than in the surrounding area. The gas velocity dispersion is notably smaller than elsewhere in the field both in the ring and along the leading edge of the dust lanes. Low gas dispersion is correlated spatially with the Hb emission. We thus see stars being formed from cold (low-dispersion) gas that is being channeled inward along the dust lanes under the influence of a large bar and accumulated into a ring near the location of the inner Lindblad resonances. This lends further strong support to the interpretation of nuclear rings in barred galaxies as resonance phenomena.
We present Ks-band surface photometry of NGC 7690 (Hubble type Sab) and NGC 4593 (SBb). We find that, in both galaxies, a major part of the "bulge" is as flat as the disk and has approximately the same color as the inner disk. In other words, the "bulges" of these galaxies have disk-like properties. We conclude that these are examples of "pseudobulges" -- that is, products of secular dynamical evolution. Nonaxisymmetries such as bars and oval disks transport disk gas toward the center. There, star formation builds dense stellar components that look like -- and often are mistaken for -- merger-built bulges but that were constructed slowly out of disk material. These pseudobulges can most easily be recognized when, as in the present galaxies, they retain disk-like properties. NGC 7690 and NGC 4593 therefore contribute to the growing evidence that secular processes help to shape galaxies. NGC 4593 contains a nuclear ring of dust that is morphologically similar to nuclear rings of star formation that are seen in many barred and oval galaxies. The nuclear dust ring is connected to nearly radial dust lanes in the galaxy's bar. Such dust lanes are a signature of gas inflow. We suggest that gas is currently accumulating in the dust ring and hypothesize that the gas ring will starburst in the future. The observations of NGC 4593 therefore suggest that major starburst events that contribute to pseudobulge growth can be episodic.Comment: 10 pages, 3 Postscript figures; requires emulateapj.cls, apjfonts.sty, and psfig.sty; accepted for publication in ApJ; for a version with full resolution figures, see http://chandra.as.utexas.edu/~kormendy/n7690.pd
We give two examples of spiral galaxies that show non-circular gas motions in the inner kiloparsecs, from SAURON integral field spectroscopy. We use harmonic decomposition of the velocity field of the ionized gas to study the underlying mass distribution, employing linear theory. The higher order harmonic terms and the main kinematic features of the observed data are consistent with an analytically constructed simple bar model. We also present maps of a number of strong absorption lines in M 100, derive simple stellar populations and correlate them with features in the gas kinematics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.