Patients with advanced chronic kidney disease (CKD), especially those on long-term dialysis, often suffer from muscle wasting and excessive fatigue. It is known that inactivity, muscle wasting and reduced physical functioning are associated with increased mortality in CKD. Known causes include uraemic myopathy and neuropathy, inactivity, and anaemia. Exercise in patients receiving regular dialysis treatment for end-stage renal disease was first introduced 3 decades ago, but is still only offered in a minority of renal units around the world, despite a significant body of evidence to support its use. Work is needed to increase awareness of the potential benefits of increased physical activity for patients with advanced CKD. This review summarizes the mechanisms of exercise intolerance and debility in advanced CKD patients, the methods used for the estimation of functional capacity, the options currently available for exercise training, and their influence on the well-being of this group of patients.
This study provides further support for the broad benefits of aerobic physical exercise in CKD. More studies are needed to understand the mechanisms of these benefits, to study whether resistance exercise will add to the benefit and to evaluate strategies to promote sustained lifestyle changes, that could ensure continued increase in habitual daily physical activity levels.
Insulin resistance is a major cause of muscle wasting in patients with ESRD. Uremic metabolic acidosis impairs insulin signaling, which normally suppresses proteolysis. The low pH may inhibit the SNAT2 L-Glutamine (L-Gln) transporter, which controls protein synthesis via amino acid-dependent insulin signaling through mammalian target of rapamycin (mTOR). Whether SNAT2 also regulates signaling to pathways that control proteolysis is unknown. In this study, inhibition of SNAT2 with the selective competitive substrate methylaminoisobutyrate or metabolic acidosis (pH 7.1) depleted intracellular L-Gln and stimulated proteolysis in cultured L6 myotubes. At pH 7.1, inhibition of the proteasome led to greater depletion of L-Gln, indicating that amino acids liberated by proteolysis sustain L-Gln levels when SNAT2 is inhibited by acidosis. Acidosis shifted the dose-response curve for suppression of proteolysis by insulin to the right, confirming that acid increases proteolysis by inducing insulin resistance. Blocking mTOR or phosphatidylinositol-3-kinase (PI3K) increased proteolysis, indicating that both signaling pathways are involved in its regulation. When both mTOR and PI3K were inhibited, methylaminoisobutyrate or acidosis did not stimulate proteolysis further. Moreover, partial silencing of SNAT2 expression in myotubes and myoblasts with small interfering RNA stimulated proteolysis and impaired insulin signaling through PI3K. In conclusion, SNAT2 not only regulates mTOR but also regulates proteolysis through PI3K and provides a link among acidosis, insulin resistance, and protein wasting in skeletal muscle cells.
The results of this study suggest that endurance exercise capacity in the heat was significantly greater in the morning than the evening, possibly due to a lower initial Tc.
It is well known that adults suffering from chronic kidney disease (CKD) experience muscle wasting and excessive fatigue, which results in a reduced exercise capacity and muscle weakness compared to their healthy counterparts, but research suggests that this can be improved through exercise. There is very limited data available regarding exercise tolerance in children with CKD and even less on the effects of exercise training programs. However, the available evidence does suggest that like adults, children also suffer from poor exercise capacity and reduced muscle strength, although the reasons for these limitations remain unclear. Studies that have attempted to implement exercise training programs in pediatric CKD populations have experienced high dropout rates, suggesting that the approach used to implement such programs in children needs to be different from the approach used for adults. This review summarizes the current knowledge regarding exercise capacity and muscle strength in children with CKD, the methods used to perform these assessments, and the possible causes of physical limitations. The results of exercise training studies, and the potential reasons as to why training programs have proved relatively unsuccessful are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.