The capacity to reliably identify fish eggs is critical in the application of the daily egg production method (DEPM) to estimate biomass of commercially important species. This application has largely been confined to species that have easily identifiable eggs. Various molecular strategies have been used to extend the DEPM to a broader range of species, with recent approaches like in situ hybridization (ISH) that preserves the integrity of whole eggs, embryos or larvae recommended as a suitable alternative over destructive procedures like PCR. Here, we designed and validated an ISH approach for the identification of whole eggs and larvae from Snapper (Chrysophrys auratus) from environmental samples using the mitochondrial 16S rRNA gene as a target for specific horseradish peroxidase (HRP)-conjugated oligonucleotide probes. This colorimetric assay allowed the highly specific detection of positive hybridization signals from intact C. auratus larvae and eggs from mixed-species samples comprising closely related taxa. Furthermore, evaluation of whole eggs across a range of developmental stages revealed the sensitivity of the approach for discerning early stages, thereby guiding staging and the identification of otherwise indistinguishable eggs from environmental samples. This approach represents a major advance from current molecular-based strategies as it is nondestructive and allows for the simultaneous identification and staging of fish eggs (and larvae). The resultant 100% egg identification certainty we have achieved allows the DEPM to be applied to a wider array of fish species and is particularly applicable to species in areas where morphologically similar eggs are being spawned at the same time.
Sea urchins can play a critical ecological role in the functioning of marine benthic ecosystems, mediating competitive interactions between corals and algae. Yet, little is known about factors affecting urchin distribution in intact coral reef systems. This study aims to determine the spatial distribution of two sympatric urchin species, Echinometra mathaei and Echinostrephus molaris, and potential factors contributing to this, within the intact coral reef system of Ningaloo Marine Park, north-western Western Australia. Benthic photographs and surveys were conducted on SCUBA at 126 sites across the Park to determine urchin presence, rugosity, substrate cover, water velocity, and fish predation for each site. Generalised additive models found that E. mathaei presence was positively related to algal cover, rugosity and nonsanctuary zones, suggesting that distribution may be driven by foraging behaviour, habitat complexity and predation. Echinostrephus molaris presence was positively related to habitat and region, suggesting its distribution may be largely driven by hydrodynamics, feeding strategy and regional variation. This study highlighted species-habitat associations and the complexities of these in structuring urchin communities. Although occupying similar niches, the predominantly nonoverlapping feeding preferences, and morphological and behavioural differences between E. mathaei and E. molaris enable these species to coexist within the intact reef system of Ningaloo Marine Park.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.