Inhibitory control of excitatory networks contributes to cortical functions. Increasing evidence indicates that parvalbumin (PV+)-expressing basket cells (BCs) are a major player in maintaining the balance between excitation (E) and inhibition (I). Disruption of E/I balance in cortical networks is believed to be a hallmark of autism spectrum disorder (ASD). Here, we report a lateralized decrease in the number of PV+ BCs in L2/3 of the somatosensory cortex in the dominant hemisphere of Shank3−/− and Cntnap2−/− mouse models of ASD. The dominant hemisphere was identified during a reaching task to establish each animal’s dominant forepaw. Double labeling with anti-PV antibody and a biotinylated lectin (Vicia villosa lectin [VVA]) showed that the number of BCs was not different but rather, some BCs did not express PV (PV−), resulting in an elevated number of PV− VVA+ BCs. Finally, we showed that dominant hindpaws had higher mechanical sensitivity when compared with the other hindpaws. This mechanical hypersensitivity in the dominant paw strongly correlated with the decrease in the number of PV+ interneurons and reduced PV expression in the corresponding cortex. Together, these results suggest that the hypersensitivity in ASD patients could be due to decreased inhibitory inputs to the dominant somatosensory cortex.
Understanding the impact of viral pathogens on the human central nervous system (CNS) has been challenging due to the lack of viable human CNS models for controlled experiments to determine the causal factors underlying pathogenesis. Human embryonic stem cells (ESCs) and, more recently, cellular reprogramming of adult somatic cells to generate human induced pluripotent stem cells (iPSCs) provide opportunities for directed differentiation to neural cells that can be used to evaluate the impact of known and emerging viruses on neural cell types. Pluripotent stem cells (PSCs) can be induced to neural lineages in either two- (2D) or three-dimensional (3D) cultures, each bearing distinct advantages and limitations for modeling viral pathogenesis and evaluating effective therapeutics. Here we review the current state of technology in stem cell-based modeling of the CNS and how these models can be used to determine viral tropism and identify cellular phenotypes to investigate virus-host interactions and facilitate drug screening. We focus on several viruses (e.g., human immunodeficiency virus (HIV), herpes simplex virus (HSV), Zika virus (ZIKV), human cytomegalovirus (HCMV), SARS-CoV-2, West Nile virus (WNV)) to illustrate key advantages, as well as challenges, of PSC-based models. We also discuss how human PSC-based models can be used to evaluate the safety and efficacy of therapeutic drugs by generating data that are complementary to existing preclinical models. Ultimately, these efforts could facilitate the movement towards personalized medicine and provide patients and physicians with an additional source of information to consider when evaluating available treatment strategies.
Inhibitory control of excitatory networks contributes to cortical functions. Increasing evidence indicates that parvalbumin expressing (PV+) basket cells (BC) are a major player in maintaining the balance between excitation (E) and inhibition (I) in the cortex. Disruption of E/I balance in cortical networks is believed to be a hallmark of autism spectrum disorders (ASD) and may contribute to sensory alterations seen in ASD. Here, we report a lateralized decrease in the number of PV+ BCs in L2/3 of the somatosensory cortex in the dominant hemisphere of adult Shank3-/- and Cntnap2-/- mouse models of ASD. The dominant hemisphere was identified during a reaching task to establish each animal’s dominant forepaw. Double labeling with anti-PV antibody and a biotinylated lectin (i.e., VVA) showed that the number of BCs was not different but rather, some BCs did not express detectable levels of PV (PV-), resulting in an elevated number of PV- VVA+ basket cells. This lateralized reduction was not observed in the number of interneurons from the other two major groups that express somatostatin or the serotonergic receptor 5HT3a. Finally, we showed that dominant hind paws had higher mechanical sensitivity (i.e., lower mechanical thresholds measured with von Frey test) but no difference in thermal sensitivity (measured with Hargreaves test) when compared to the other hind paw. This mechanical hypersensitivity in the dominant paw correlated with the decrease in the number of PV+ interneurons and reduced PV expression in the corresponding cortex. Together, these results suggest that the sensory hypersensitivity in ASD could be due to decreased inhibitory inputs to the dominant somatosensory cortex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.