Adequate intake of calcium and phosphorus in the appropriate ratio of 1-2:1 (Ca:P), in addition to magnesium and vitamin D, is vital for bone health and development of infants. In this feasibility study, the ratio of Ca:P in conjunction with vitamin D and other essential elements (Cu, Fe, K, Mg, Na, and Zn) in a range of commercial infant food products in the UK was investigated. The elemental analysis was carried out using inductively coupled plasma optical emission spectrometry, and vitamin D levels were determined using an enzyme-linked immunosorbent assay. The quantitative data were further evaluated, based on a standardised menu, to measure the total daily intake of an infant aged 7-12 months against the Reference Nutrient Intake. The results from the study show that the Ca:P ratio of the infant's total dietary intake was within the recommended range at 1.49:1. However, the level of intake for each of the nutrients analyzed, with the exception of sodium, was found to be above the Reference Nutrient Intake, which warrants further investigation in relation to both micronutrient interactions and in situations where the intake of fortified infant formula milk is compromised. Finally, as the study is the first to include consumption of infant snack products, the level of total calorie intake was also calculated in order to assess the total daily estimated energy intake; the results indicate that energy intakes exceed recommendations by 42%, which may have implications for obesity.
The omega-3-fatty acid, docosahexaenoic acid (DHA) 22:6 n-3, is an important food component for the visual and brain development of infants. In this study two approaches have been explored for the encapsulation of DHA in the pH dependant polymer hydroxyl-propylmethyl-cellulose-acetate-succinate (HPMCAS). In the first approach Direct Spray Drying (DSD) was implemented for the microencapsulation of DHA/HPMCAS organic solutions, whilst in the second approach solid lipid nanoparticle (SLN) dispersions of DHA, were first produced by high-pressure homogenization, prior to being spray dried in HPMCAS aqueous solutions. The DSD approach resulted in significantly higher quantities of DHA being encapsulated, at 2.09 g/100 g compared to 0.60 g/100 g in the spray-dried SLNs. The DHA stability increased with the direct spray-drying approach. Release studies of DHA in the direct sprayed dried samples revealed a lag time for 2 hours in acidic media followed by rapid release in phosphate buffer (pH 6.8).
According to the European Food Safety Authority, currently, there are no reliable data or robust guidelines available in relation to the micronutrient composition of infant foods. This study evaluated the intake of vitamins A and E of infants from 'ready-to-feed' foods and formulas.Normal phase high performance liquid chromatography was employed for simultaneous quantification of retinyl acetate, retinyl palmitate, α-tocopherol and γ-tocopherol, reverse phase high performance liquid chromatography for the quantification of β-carotene, and UV spectrophotometry for the quantification of carotenoids from selected infant food samples. Based on the results of this study, the estimated total daily intake of vitamin A (retinol equivalents) and vitamin E (α-tocopherol equivalents) from both infant food and formula milk exceed recommendations set by the UK Department of Health. This requires further analysis of risk of exposure, whilst a cause for concern over deficiency might arise when the intake of milk is compromised.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.