Drug delivery to the posterior eye segment is an important challenge in ophthalmology, because many diseases affect the retina and choroid leading to impaired vision or blindness. Currently, intravitreal injections are the method of choice to administer drugs to the retina, but this approach is applicable only in selected cases (e.g. anti-VEGF antibodies and soluble receptors). There are two basic approaches that can be adopted to improve retinal drug delivery: prolonged and/or retina targeted delivery of intravitreal drugs and use of other routes of drug administration, such as periocular, suprachoroidal, sub-retinal, systemic, or topical. Properties of the administration route, drug and delivery system determine the efficacy and safety of these approaches. Pharmacokinetic and pharmacodynamic factors determine the required dosing rates and doses that are needed for drug action. In addition, tolerability factors limit the use of many materials in ocular drug delivery. This review article provides a critical discussion of retinal drug delivery, particularly from the pharmacokinetic point of view. This article does not include an extensive review of drug delivery technologies, because they have already been reviewed several times recently. Instead, we aim to provide a systematic and quantitative view on the pharmacokinetic factors in drug delivery to the posterior eye segment. This review is based on the literature and unpublished data from the authors' laboratory.
Corneal esterases are utilized in the activation of topically applied ester prodrugs. Esterases may also be involved in the metabolism of drugs in posterior eye tissues, but their physiological activity is unknown. Furthermore, extrapolation of the esterase activity from protein level to the tissues is missing. The aims of the current study were to determine esterase activities in porcine and albino rabbit ocular tissues, calculate the activities for whole tissues and compare esterase activity between the species. We conducted a hydrolysis study with ocular tissue homogenates using an esterase probe substrate 4-nitrophenyl acetate. The hydrolysis rates were first normalized to protein content and then scaled to whole tissues. The hydrolytic rate normalized to protein content was high in the cornea and iris-ciliary body and low in the lens and aqueous humor, and in general, the rabbit tissues had higher hydrolytic rates than the porcine ones. Esterase activity scaled to whole tissue was high in cornea and iris-ciliary body and low in aqueous humor and retinal pigment epithelium in both species. The current study revealed differences in esterase activities among the ocular tissues and the species. This basic knowledge on ocular esterases provides background information particularly for posterior segment drug development.
Lens is the avascular tissue in the eye between the aqueous humor and vitreous. Drug binding to the lens might affect ocular pharmacokinetics, and the binding may also have a pharmacological role in drug-induced cataract and cataract treatment. Drug distribution in the lens has been studied in vitro with many compounds; however, the experimental methods vary, no detailed information on distribution between the lens sublayers exist, and the partition coefficients are reported rarely. Therefore, our objectives were to clarify drug localization in the lens layers and establish partition coefficients for a wide range of molecules. Furthermore, we aimed to illustrate the effect of lenticular drug binding on overall ocular drug pharmacokinetics. We studied the distribution of 16 drugs and three fluorescent dyes in whole porcine lenses in vitro with imaging mass spectrometry and fluorescence microscopy techniques. Furthermore, we determined lens/buffer partition coefficients with the same experimental setup for 28 drugs with mass spectrometry. Finally, the effect of lenticular binding of drugs on aqueous humor drug exposure was explored with pharmacokinetic simulations. After 4 h, the drugs and the dyes distributed only to the outermost lens layers (capsule and cortex). The lens/buffer partition coefficients for the drugs were low, ranging from 0.05 to 0.8. On the basis of the pharmacokinetic simulations, a high lens-aqueous humor partition coefficient increases drug exposure in the lens but does not significantly alter the pharmacokinetics in the aqueous humor. To conclude, the lens seems to act mainly as a physical barrier for drug distribution in the eye, and drug binding to the lens affects mainly the drug pharmacokinetics in the lens.
Fentanyl is used for pain treatment during pregnancy in human beings and animals. However, fentanyl pharmacokinetics during pregnancy has not been fully established. The aim of this study was to characterize fentanyl pharmacokinetics in pregnant sheep after intravenous and transdermal dosing during surgical procedure performed to ewe and foetus. Pharmacokinetic parameters reported for non-pregnant sheep and nominal transdermal dose rate were utilized for a priori calculation to achieve analgesic fentanyl concentration (0.5-2 ng/ml) in maternal plasma. A total of 20 Aland landrace ewes at 118-127 gestational days were used. In the first protocol, 1 week before surgery, 10 animals received 2 lg/kg fentanyl intravenous bolus, and on the operation day, transdermal fentanyl patches at nominal dose rate of 2 lg/kg/hr were applied to antebrachium, and ewes were then given a 2 lg/kg intravenous bolus followed by an intra-operative 2.5 lg/kg/hr infusion. In the second protocol, 10 animals received fentanyl only as transdermal patches on the operation day and oxycodone for rescue analgesia. The data were analysed with population pharmacokinetic modelling. Intra-and post-operative fentanyl concentrations were similar and slightly lower than the a priori predictions, and elimination and distribution clearances appeared slower during than before or after the surgery. Transdermal patches provided sustained fentanyl absorption for up to 5 days, but the absorption rate was slower than the nominal dose rate and showed a high interindividual variability. Further research is warranted to evaluate the clinical relevance of the observations made in sheep.Opioids are commonly used to treat pain during labour and caesarean section, and also for pregnant women for surgical procedures and other severe pain conditions. Fentanyl, a synthetic opiate derivative, has a rapid onset and short half-life [1]. It is metabolized to inactive metabolites. These properties make fentanyl a feasible compound for labour analgesia. During labour, fentanyl is commonly administered spinally, epidurally, intravenously or intramuscularly. Transdermal delivery of fentanyl has been studied in other populations, but the pharmacokinetics of transdermal fentanyl in pregnant women is not known. Furthermore, possible impact of labouror caesarean section-induced transient changes in physiology on pharmacokinetics of fentanyl is not established.In animal studies, intravenous and transdermal fentanyl pharmacokinetics has been studied in several species, including llamas, non-pregnant sheep and horses [2][3][4][5]. Pharmacokinetics of intravenously administered fentanyl in pregnant sheep has been studied by Craft et al. [6] with radioimmunoassay. However, the results may be confounded by cross-reaction of radioimmunoassay with fentanyl metabolites in plasma as shown in horses [7]. Furthermore, the fentanyl concentrations were monitored only up to 120 min. after administration during which the fentanyl kinetics are mainly governed by distribution processes, t...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.