Identifying gene regulatory targets of nuclear proteins in tissues remains a challenge. Here we describe intranuclear Cellular Indexing of Transcriptomes and Epitopes (inCITE-seq), a scalable method for measuring multiplexed intranuclear protein levels and the transcriptome in parallel in thousands of cells, enabling joint analysis of TF levels and gene expression in vivo. We apply inCITE-seq to characterize cell state-related changes upon pharmacological induction of neuronal activity in the mouse brain. Modeling gene expression as a linear combination of quantitative protein levels revealed the genome-wide effect of each TF and recovered known targets. Cell typespecific genes associated with each TF were co-expressed as distinct modules that each corresponded to positive or negative TF levels, showing that our approach can disentangle relative contributions of TFs to gene expression and add interpretability to gene networks. InCITE-seq can illuminate how combinations of nuclear proteins shape gene expression in native tissue contexts, with direct applications to solid or frozen tissues and clinical specimens..
Background The conserved NDR-family kinase Sid2p localizes to the contractile ring during fission yeast cytokinesis to promote ring constriction, septation, and completion of cell division. Previous studies have found that the Type 2 interphase node proteins Blt1p and Gef2p contribute to localization of Sid2p and its regulatory protein Mob1p at the division site. However, their relative contributions and whether they operate in the same or parallel pathways has been unclear. In this study, we quantify the respective roles of Blt1p and Gef2p in Sid2p/Mob1p recruitment and characterize the effect of single and double deletion mutants on contractile ring dynamics and completion of cell division. Results Using quantitative confocal fluorescence microscopy, we measured Sid2p and Mob1p recruitment to the division site in blt1∆ , gef2∆ , and blt1∆ / gef2∆ mutant cells. We observed an equivalent decrease in Sid2p/Mob1p localization for both single and double mutants. Though assembly of the contractile ring is normal in these mutants, the reduction in Sid2p/Mob1p at the division site delayed the onset of contractile ring constriction and completion of division. We quantified localization of Blt1p and Gef2p at the medial cortex throughout the cell cycle and found that Blt1p localization to interphase nodes and the contractile ring is independent of Gef2p. However, Gef2p localization to the contractile ring is decreased in blt1∆ mutants. Conclusions Blt1p and Gef2p work in the same pathway, rather than in parallel, to localize the NDR-family kinase Sid2p and its regulatory partner Mob1p to the division site, thereby promoting timely completion of cell division. Future studies are necessary to understand how additional fission yeast cytokinesis proteins work with these Type 2 interphase node components to promote Sid2p/Mob1p recruitment. Electronic supplementary material The online version of this article (10.1186/s12860-018-0182-z) contains supplementary material, which is available to authorized users.
Identifying gene regulatory targets of nuclear proteins in tissues remains a challenge. Here we describe intranuclear Cellular Indexing of Transcriptomes and Epitopes (inCITE-seq), a scalable method for measuring multiplexed intranuclear protein levels and the transcriptome in parallel in thousands of cells, enabling joint analysis of TF levels and gene expression in vivo. We apply inCITE-seq to characterize cell state-related changes upon pharmacological induction of neuronal activity in the mouse brain. Modeling gene expression as a linear combination of quantitative protein levels revealed the genome-wide effect of each TF and recovered known targets. Cell type-specific genes associated with each TF were co-expressed as distinct modules that each corresponded to positive or negative TF levels, showing that our approach can disentangle relative contributions of TFs to gene expression and add interpretability to gene networks. InCITE-seq can illuminate how combinations of nuclear proteins shape gene expression in native tissue contexts, with direct applications to solid or frozen tissues and clinical specimens.
Profiling cellular heterogeneity in formalin-fixed paraffin-embedded (FFPE) tissues is key to characterizing clinical specimens for biomarkers, therapeutic targets, and drug responses. Here, we optimize methods for isolating intact nuclei and single nucleus RNA-Seq from FFPE tissues in the mouse brain, and demonstrate a pilot application to a human clinical specimen of lung adenocarcinoma. Our method opens the way to broad applications of snRNA-Seq to archival tissues, including clinical samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.