Feature tracking is a common task in visualization applications, where methods based on topological data analysis (TDA) have successfully been applied in the past for feature definition as well as tracking. In this work, we focus on tracking extrema of temporal scalar fields. A family of TDA approaches address this task by establishing one-to-one correspondences between extrema based on discrete gradient vector fields. More specifically, two extrema of subsequent time steps are matched if they fall into their respective ascending and descending manifolds. However, due to this oneto-one assignment, these approaches are prone to fail where, e.g., extrema are located in regions with low gradient magnitude, or are located close to boundaries of the manifolds. Therefore, we propose a probabilistic matching that captures a larger set of possible correspondences via neighborhood sampling, or by computing the overlap of the manifolds. We illustrate the usefulness of the approach with two application cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.