There is a great deal of interest in a fine-scale population structure in the UK, both as a signature of historical immigration events and because of the effect population structure may have on disease association studies. Although population structure appears to have a minor impact on the current generation of genome-wide association studies, it is likely to have a significant part in the next generation of studies designed to search for rare variants. A powerful way of detecting such structure is to control and document carefully the provenance of the samples involved. In this study, we describe the collection of a cohort of rural UK samples (The People of the British Isles), aimed at providing a well-characterised UK-control population that can be used as a resource by the research community, as well as providing a fine-scale genetic information on the British population. So far, some 4000 samples have been collected, the majority of which fit the criteria of coming from a rural area and having all four grandparents from approximately the same area. Analysis of the first 3865 samples that have been geocoded indicates that 75% have a mean distance between grandparental places of birth of 37.3 km, and that about 70% of grandparental places of birth can be classed as rural. Preliminary genotyping of 1057 samples demonstrates the value of these samples for investigating a fine-scale population structure within the UK, and shows how this can be enhanced by the use of surnames.
We report the novel associations between P450 genotype and CRA risk, and highlight the risk association with GSTM1 genotype, common to our CRA and cancer case-control series. In addition, we report a novel modifying influence of GSTP1 genotype on dietary chemoprevention. These novel findings require independent confirmation.
Whilst common genetic variation in many non-coding genomic regulatory regions are known to impart risk of colorectal cancer (CRC), much of the heritability of CRC remains unexplained. To examine the role of recurrent coding sequence variation in CRC aetiology, we genotyped 12,638 CRCs cases and 29,045 controls from six European populations. Single-variant analysis identified a coding variant (rs3184504) in SH2B3 (12q24) associated with CRC risk (OR = 1.08, P = 3.9 × 10−7), and novel damaging coding variants in 3 genes previously tagged by GWAS efforts; rs16888728 (8q24) in UTP23 (OR = 1.15, P = 1.4 × 10−7); rs6580742 and rs12303082 (12q13) in FAM186A (OR = 1.11, P = 1.2 × 10−7 and OR = 1.09, P = 7.4 × 10−8); rs1129406 (12q13) in ATF1 (OR = 1.11, P = 8.3 × 10−9), all reaching exome-wide significance levels. Gene based tests identified associations between CRC and PCDHGA genes (P < 2.90 × 10−6). We found an excess of rare, damaging variants in base-excision (P = 2.4 × 10−4) and DNA mismatch repair genes (P = 6.1 × 10−4) consistent with a recessive mode of inheritance. This study comprehensively explores the contribution of coding sequence variation to CRC risk, identifying associations with coding variation in 4 genes and PCDHG gene cluster and several candidate recessive alleles. However, these findings suggest that recurrent, low-frequency coding variants account for a minority of the unexplained heritability of CRC.
Epidemiologic evidence suggests a role for folate, a critical component of the 1-carbon cycle, in colorectal adenoma and cancer pathogenesis. Low folate levels, along with genetic polymorphisms in key enzymes such as methylene tetrahydrofolate reductase (MTHFR), can cause DNA hypomethylation and aberrant CpG methylation, which have been associated with colorectal tumor development. We investigated self-reported folate and alcohol intake alongside possible modifying effects of MTHFR 677 C>T and 1298 A>C polymorphisms in UK case-control studies of colorectal adenoma (317 cases, 296 controls) and cancer (500 cases, 742 controls). A significant association between MTHFR 1298 and colorectal cancer risk was observed [odds ratio, 1.57; 95% confidence interval (95% CI), 1.05-2.37], which was more pronounced in males (odds ratio, 3.02; 95% CI, 1.63-5.62). Although we found no association between MTHFR 677 and colorectal cancer, when data were stratified by sex, an increased risk was seen in females (odds ratio, 1.96; 95% CI, 1.11-3.46) but not in males. High folate intake was associated with a decreased risk for colorectal adenoma (odds ratio, 0.47; 95% CI, 0.30-0.73; P trend , <0.001), which was modified by MTHFR 1298 genotype (P interaction = 0.006). However, we found no evidence to support the hypothesis that a high-folate diet protects against colorectal cancer development. Consistent with previous studies, high alcohol intake (z14 U/wk) was associated with a significantly increased cancer risk (odds ratio, 2.57; 95% CI, 1.81-3.64). Our data suggest that dietary folate intake may be an important determinant for premalignant colorectal disease development but not colorectal cancer, an association that is modified by MTHFR genotype. (Cancer Epidemiol Biomarkers Prev 2008;17(9):2421 -30)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.