The rapid detection of biomolecules in a point of care (POC) setting is very important for diagnostic purposes. A platform which can provide this, whilst still being low cost and simple to use, is paper-based lateral flow immunoassays (LFIA). LFIA combine immunology and chromatography to detect a target by forming an immunocomplex with a label which traps them in a test zone. Qualitative analysis can be performed using the naked eye whilst quantitative analysis takes place by measuring the optical signal provided by the label at the test zone. There are numerous detection methods available; however, many suffer from low sensitivity and lack of multiplexing capabilities or are poor at providing POC quantitative analysis. An attractive method to overcome this is to use nanoparticles coated in Raman reporters as the labelled species and to analyse test zones using surface-enhanced Raman scattering (SERS). Due to the wide variety of metal nanoparticles, Raman reporter and laser excitations that are available, SERS-based LFIA have been adapted to identify and quantify multiple targets at once. Large Raman microscopes combined with long mapping times have limited the platform to the lab; however, by transferring the analysis to portable Raman instruments, rapid and quantitative measurements can be taken at the POC without any loss in sensitivity. Portable or handheld SERS-LFIA platforms can therefore be used anywhere, from modern clinics to remote and resource-poor settings. This review will present an overview of SERS-based LFIA platforms and the major recent advancements in multiplexing and portable and handheld detection with an outlook on the future of the platform. Graphical abstract
Background: The coronavirus disease 2019 (COVID-19) pandemic has highlighted the reliance on antigen detection rapid diagnostic tests (Ag-RDTs). Their evaluation at point of use is a priority. Methods: Here, we report a multi-centre evaluation of the analytical sensitivity, specificity, and clinical accuracy of the Mologic COVID-19 Ag-RDT by comparing to reverse transcriptase polymerase chain reaction (RT-qPCR) results from individuals with and without COVID-19 symptoms. Participants had attended hospitals in Merseyside, hospital and ambulance services in Yorkshire, and drive-through testing facilities in Northumberland, UK. Results: The limit of detection of the Mologic COVID-19 Ag-RDT was 5.0 x 102 pfu/ml in swab matrix with no cross-reactivity and interference for any other pathogens tested. A total of 347 participants were enrolled from 26th of November 2020 to 15th of February 2021 with 39.2% (CI 34.0-44.6) testing RT-qPCR positive for SARS-CoV-2. The overall sensitivity and specificity of the Mologic Ag-RDT compared to the reference SARS-CoV-2 RT-qPCR were 85.0% (95% CI 78.3-90.2) and 97.8% (95.0-99.3), respectively. Sensitivity was stratified by RT-qPCR cycle threshold (Ct) and 98.4% (91.3-100) of samples with a Ct less than 20 and 93.2% (86.5-97.2) of samples with a Ct less than 25 were detected using the Ag-RDT. Clinical accuracy was stratified by sampling strategy, swab type and clinical presentation. Mologic COVID-19 Ag-RDT demonstrated highest sensitivity with nose/throat swabs compared with throat or nose swabs alone; however, the differences were not statistically significant. Conclusions: Overall, the Mologic test had high diagnostic accuracy across multiple different settings, different demographics, and on self-collected swab specimens. These findings suggest the Mologic rapid antigen test may be deployed effectively across a range of use settings.
The low-frequency (terahertz) vibrational spectroscopy of two chlorophyll species, Chl-𝑎 and one of its magnesium derivatives (Chl-Mg-Na), has been investigated experimentally. The combination of terahertz time-domain spectroscopy and Fourier transform infrared spectroscopy has enabled a broad frequency range to be covered (0.2 to 18 THz). For Chl-Mg-Na, the terahertz spectra show clear and well-marked features at 1.44, 1.64, and 1.83 THz dominated by intermolecular interactions. The frequency dependent refractive index and absorption coefficient of Chl-Mg-Na were determined using the Fit@TDS software. Below 1.0 THz, a refractive index of 2.09 was measured. In order to acquire further understanding of the observed vibrational modes, a detailed study of the temperature dependence of the line positions of the lowest modes in Chl-Mg-Na was performed. As the temperature is increased from 88 K to 298 K, the feature at 1.83 THz experiences a notable red shift of frequency and line shape broadening, whereas the feature at 1.44 THz shows little change. These results suggest that the 1.83 THz feature is dominated by intermolecular motions occurring over the crystalline unit cell of the Chl-Mg-Na molecular crystal. Finally, terahertz time-domain was used to acquire the spectra of an ornamental plant bearing yellow-green variegated leaves (ivy, Aureomarginata variety), the yellow sectors having lower chlorophyll content compared to green sectors. In dehydrated green tissue, the chlorophyll molecules showed well-marked intermolecular vibrational modes at 1.85 THz, indicating that chlorophyll molecules are prone to pack with an ordered molecular arrangement. These results demonstrate the potential application of THz spectroscopy in agricultural sciences.
The terahertz absorption spectra of sodium magnesium chlorophyllin (Chl-Mg-Na) and sodium copper chlorophyllin (Cu-Chl), two major members of the chlorophyll derivative family, have been measured in the range 0.2−3.0 THz (6.6−100 cm -1 ), at room temperature. Additionally, surface-enhanced Raman scattering spectroscopy was used to supplement data in the higher frequency range. The capability of terahertz spectroscopy for quantitative characterization of Chl-Mg-Na intermolecular vibrations was investigated and the sensitivity of the 1.82-THz feature with degree of hydration by changes in the molecular environment was examined. For Cu-Chl derivative, a broad feature was observed around 1.8 THz which currently hinders clear Cu-Chl identification and quantification.
The terahertz absorption spectra of sodium magnesium chlorophyllin (Chl-Mg-Na) and sodium copper chlorophyllin (Cu-Chl), two major members of the chlorophyll derivative family, have been measured in the range 0.2−2.5 THz, at room temperature. The capability of terahertz spectroscopy for quantitative characterization of Chl-Mg-Na intermolecular vibrations was investigated and the sensitivity of transitions with degree of hydration by changes in the molecular environment was examined. For the Cu-Chl derivative, a broad feature was observed around 1.8 THz which currently hinders clear Cu-Chl identification and quantification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.