The breakthrough curve obtained from a single-well push-pull test can be adjusted to account for dilution of the injection fluid in the aquifer fluid. The dilution-adjusted breakthrough curve can be analyzed to estimate the reaction rate of a solute. The conventional dilution-adjusted method assumes that the ratios of the concentrations of the nonreactive and reactive solutes in the injection fluid vs. the aquifer fluid are equal. If this assumption is invalid, the conventional method will generate inaccurate breakthrough curves and may lead to erroneous conclusions regarding the reactivity of a solute. In this study, a new method that generates a dilution-adjusted breakthrough curve was theoretically developed to account for any possible combination of nonreactive and reactive solute concentrations in the injection and aquifer fluids. The newly developed method was applied to a field-based data set and was shown to generate more accurate dilution-adjusted breakthrough curves. The improved dilution-adjusted method presented here is simple, makes no assumptions regarding the concentrations of the nonreactive and reactive solutes in the injection and aquifer fluids, and easily allows for estimating reaction rates during push-pull tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.