Traditionally, access to structurally defined complex carbohydrates has been very laborious. Although recent advancements in solid-phase synthesis have made the construction of complex oligosaccharides less tedious, a high level of technical expertise is still necessary to obtain the desired structures. We describe the automated chemical synthesis of several oligosaccharides on a solid-phase synthesizer. A branched dodecasaccharide was synthesized through the use of glycosyl phosphate building blocks and an octenediol functionalized resin. The target oligosaccharide was readily obtained after cleavage from the solid support. Access to certain complex oligosaccharides now has become feasible in a fashion much like the construction of oligopeptides and oligonucleotides.
Described is an efficient one-pot synthesis of alpha- and beta-glycosyl phosphate and dithiophosphate triesters from glycals via 1,2-anhydrosugars. Glycosyl phosphates function as versatile glycosylating agents for the synthesis of beta-glucosidic, beta-galactosidic, alpha-fucosidic, alpha-mannosidic, beta-glucuronic acid, and beta-glucosamine linkages upon activation with trimethylsilyl trifluoromethanesulfonate (TMSOTf). In addition to serving as efficient donors for O-glycosylations, glycosyl phosphates are effective in the preparation of S-glycosides and C-glycosides. Furthermore, the acid-catalyzed coupling of glycosyl phosphates with silylated acceptors is also discussed. Glycosyl dithiophosphates are synthesized and are also used as glycosyl donors. This alternate method offers compatibility with acceptors containing glycals to form beta-glycosides. To minimize protecting group manipulations, orthogonal and regioselective glycosylation strategies with glycosyl phosphates are reported. An orthogonal glycosylation method involving the activation of a glycosyl phosphate donor in the presence of a thioglycoside acceptor is described, as is an acceptor-mediated regioselective glycosylation strategy. Additionally, a unique glycosylation strategy exploiting the difference in reactivity of alpha- and beta-glycosyl phosphates is disclosed. The procedures outlined here provide the basis for the assembly of complex oligosaccharides in solution and by automated solid-phase synthesis with glycosyl phosphate building blocks exclusively or in concert with other donors.
A general, modular strategy for the first completely stereoselective synthesis of defined heparin oligosaccharides is described. Six monosaccharide building blocks (four differentially protected glucosamines, one glucuronic and one iduronic acid) were utilized to prepare di- and trisaccharide modules in a fully selective fashion. Installation of the alpha-glucosamine linkage was controlled by placing a conformational constraint on the uronic acid glycosyl acceptors thereby establishing a new concept for stereochemical control. Combination of disaccharide modules to form trans-uronic acid linkages was completely selective by virtue of C2 participating groups. Coupling reactions between disaccharide modules exhibited sequence dependence. While the union of many glucosamine uronic acid disaccharide modules did not meet any problems, certain sequences proved not accessible. Elaboration of glucosamine uronic acid disaccharide building blocks to trisaccharide modules by addition of either one additional glucosamine or uronic acid allowed for stereoselective access to oligosaccharides as demonstrated on the example of a hexasaccharide resembling the ATIII-binding sequence. Final deprotection and sulfation yielded the fully synthetic heparin oligosaccharides.
A general, modular strategy for the first completely stereoselective synthesis of defined heparin oligosaccharides is described. Six monosaccharide building blocks (four differentially protected glucosamines, one glucuronic and one iduronic acid) were utilized to prepare di-and trisaccharide modules in a fully selective fashion. Installation of the a-glucosamine linkage was controlled by placing a conformational constraint on the uronic acid glycosyl acceptors thereby establishing a new concept for stereochemical control. Combination of disaccharide modules to form trans-uronic acid linkages was completely selective by virtue of C2 participating groups. Coupling reactions between disaccharide modules exhibited sequence dependence. While the union of many glucosamine uronic acid disaccharide modules did not meet any problems, certain sequences proved not accessible. Elaboration of glucosamine uronic acid disaccharide building blocks to trisaccharide modules by addition of either one additional glucosamine or uronic acid allowed for stereoselective access to oligosaccharides as demonstrated on the example of a hexasaccharide resembling the ATIII-binding sequence. Final deprotection and sulfation yielded the fully synthetic heparin oligosaccharides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.