The apple maggot, Rhagoletis pomonella (Walsh), was introduced into the apple-growing regions of the Pacific Northwest in the U.S.A. during the past 60–100 yr. Apple maggot (larvae, puparia, and adults) is difficult to distinguish from its morphologically similar sister species, Rhagoletis zephyria Snow, which is native and abundant in the Pacific Northwest. While morphological identifications are common practice, a simple, inexpensive assay based on genetic differences would be very useful when morphological traits are unclear. Here we report nucleotide substitution and insertion–deletion mutations in the nontranscribed spacer (NTS) of the ribosomal RNA gene cistron of R. pomonella and R. zephyria that appear to be diagnostic for these two fly species. Insertion–deletion variation is substantial and results in a 49 base-pair difference in PCR amplicon size between R. zephyria and R. pomonella that can be scored using agarose gel electrophoresis. PCR amplification and DNA sequencing of 766 bp of the NTS region from 38 R. pomonella individuals and 35 R. zephyria individuals from across their geographic ranges led to the expected PCR fragments of approx. 840 bp and 790 bp, respectively, as did amplification and sequencing of a smaller set of 26 R. pomonella and 16 R. zephyria flies from a sympatric site in Washington State. Conversely, 633 bp mitochondrial COI barcode sequences from this set of flies were polyphyletic with respect to R. pomonella and R. zephyria. Thus, differences in NTS PCR products on agarose gels potentially provide a simple way to distinguish between R. pomonella and R. zephyria.
Bacterial leaf spot (BLS) of lettuce caused by Xanthomonas hortorum pv. vitians (Xhv) was first described over 100 years ago and remains a significant threat to lettuce cultivation today. This study investigated the genetic relatedness of the Xhv strains and the possible genetic sources of this race-specific pathogenicity. Whole genome sequences of eighteen Xhv strains representing the three races, along with eight related Xanthomonas strains, were included in the analysis. A maximum likelihood phylogeny based on concatenated whole genome SNPs confirmed previous results describing two major lineages of Xhv strains. Gene clusters encoding secretion systems, secondary metabolites, and bacteriocins were assessed to identify putative virulence factors that distinguish the Xhv races. Genome sequences were mined for effector genes, which have been shown to be involved in race specificity in other systems. Two effectors identified in this study, xopAQ and the novel variant xopAF2, were revealed as possible mediators of a gene-for-gene interaction between Xhv race 1 and 3 strains and wild lettuce Lactuca serriola ARM-09-161-10-1. Transposase sequence identified downstream of xopAF2 and prophage sequence found nearby within Xhv race 1 and 3 insertion sequences suggest that this gene may have been acquired through phage-mediated gene transfer. No other factors were identified from these analyses that distinguish the Xhv races.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.