In complex colloidal systems, particle-poor regions can develop within particle-rich phases during sedimentation or creaming. These particle-poor regions are overlooked by 1D profiles, which are typically used to assess particle distributions in a sample. Alternative methods to visualise and quantify these regions are required to better understand phase separation, which is the focus of this paper. Magnetic resonance imaging has been used to monitor the development of compositional heterogeneity in a vesicle-polymer mixture undergoing creaming. T relaxation time maps were used to identify the distribution of vesicles, with vesicle-poor regions exhibiting higher T relaxation times than regions richer in vesicles. Phase separated structures displayed a range of different morphologies and a variety of image analysis methods, including first-order statistics, Fourier transformation, grey level co-occurrence matrices and Moran's I spatial autocorrelation, were used to characterise these structures, and quantify their heterogeneity. Of the image analysis techniques used, Moran's I was found to be the most effective at quantifying the degree and morphology of phase separation, providing a robust, quantitative measure by which comparisons can be made between a diverse range of systems undergoing phase separation. The sensitivity of Moran's I can be enhanced by the choice of weight matrices used.
A nuclear magnetic resonance (NMR) study of a pore opening in amino-functionalized metal−organic framework (MOF) MIL-53(Al) in response to methane pressure variation is presented. Variations of both NMR signal intensities and transversal relaxation rates for methane are found to reveal hysteretic structural transitions in the MOF material, which are smeared out over broad pressure ranges. Experiments with pressure reversals upon an incomplete adsorption/desorption gave deeper insight into the microscopic transition mechanisms. These experiments have unequivocally proven that the non-stepwise pore opening/closing transitions observed in the experiments are governed by a distribution of the opening/closing pressures over different MOF crystallites, for example, due to a distribution of the crystal sizes or shapes. The slow kinetics of the structural transitions measured in the hysteresis regime revealed a complex free energy landscape for the phase transition process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.